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SUMMARY

Many Navy tasks depend on the skilled performance of highly-trained
individuals. Training for such tasks often requires closely supervised,
intensive, and highly technical instruction from a knowledgeable instructor.
In many cases, skilled Navy instructors are in short supply--and the quality
of instruction can vary from individual to individual.

Recent advances in computer science and psychology have created the
opportunity to develop "intilligent" computer-based instructional systems.
Such systems can not only identify trainee errors during instructional
sessions but also understand why the trainee has erred based on its knowledge
of the task and a model of the trainee's cognitive processes. Such diagnoses
are critical to correcting a trainee's misunderstanding or specific skill
deficiency about the task he is trying to learn.

The development of such computer-based instructional systems requires the
accumulation and codification of extensive knowledge about the target task and
trainees' behavior when learning the task. Such knowledge--essentially that
which an expert instructor brings to bear during training--includes the skills
and procedures required to perform the task correctly, the types of errors
trainees can exhibit during learning, techniques for diagnosing trainee
performance deficits, and instructional interventions to correct skill
deficits and train appropriate behavior.

Development efforts aimed at constructing such knowledge-intensive
'expert" systems often adopt the "knowledge engineering" paradigm. Knowledge
engineering is an iterative process with six principal phases. These phases
include definition of the system's capabilities, extraction of domain
knowledge, formalization of the knowledge, design of the expert system,
implementation of the system, and test of system performance. The process is
distinguished by the necessity of repeated and extensive interactions between
a domain expert and a highly trained system developer who elicits and encodes
the expert's knowledge about task performance and training procedures.

The shortage of experienced knowledge engineers and the difficulty of co-
locating knowledge engineers and domain experts for extended periods of time
limit the opportunities for the development of new expert training systems.
Therefore, a need exists to develop automated tools for knowledge acquisition
and formalization that could interact directly with domain experts and reduce
the involvement of knowledge engineers. Such tools could facilitate the more
rapid and widespread development of advanced training systems with automated
instructional features. These systems, in turn, would contribute to Navy
tralninq! effectiveness by increasing the availability of high-quality
instruction through the use of computer-based training aids.

The generality of current tools for automated knowledge acquisition is
limited both by the present state of the art in knowledge engineering and by
dependencies among stages in the process that make it difficult to isolate
individual functions. The process of acquiring domain-specific expert
knowledge is dependent on the formalisms used to represent that knowledge,
which, in turn, depend on how the knowledge will be used. The technology for
engineering knowledge-based systems has not yet progressed to a stage in which
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relationships among domain characteristics, system objectives, and knowledge
representation requirements are well understood. This lack of understanding
limits the generality of system architectures and of any potential aids for
the system building process. To a large extent, the power of such aids
already developed has been inversely related to their generality. *

The design of automated aids is also complicated by the opportunistic,
unpredictable nature of the system development process. The opportunistic
nature of the process derives from the multiple dependencies among the various
stages in system development. The system builder has a number of
interdependent objectives in addition to domain knowledge acquisition, and he
must pursue them iteratively and incrementally--that is, in parallel--since
there is inadequate design knowledge for achieving them sequentially. It is
difficult to design an automated aid to be used under such variable,
unpredictable circumstances. These characteristics of the knowledge
engineering process limit the scope and generality of a knowledge acquisition
system that can be produced given the current state of the art.

Within these constraints, project research considered a number of
alternative concepts for aids to assist the development of knowledge-based
instructional systems. These concepts were evaluated against a number of
criteria that considered their feasibility, utility, and appropriateness for
use in military applications. The most promising concept entailed the
development of systems for the acquisition of knowledge in a variety of
domains with a single conceptual class. The notion of a class is somewhat
intuitive, but it may be defined mo-re technically as a set of domains that
share a significant number of concept abstractions among their bodies of
knowledge and that could be taught by a single training system with a fixed
set of instructional features. Such classes within the Navy include sonar and
radar system operations, system maintenance, and platform-level combat
tactics.

The development of an automated knowledge acquisition aid generic to a
class of domains requires the prior development of an adequate training systeii
for one domain in the class. Subsequently, the automated aid is developed and
used to implement the "same" training system for other domains in the class.
The automated aid depends on the particular implementation of the training
system and on knowledge it embodies, abstracted from the first development
effort, about how to elicit and organize domain knowledge for the domain
class. This approach avoids the problem of interfacing an aid to an iterative
and variable set of activities by completing all the activities, except the
acquisition and encoding of specific domain knowledge, in the course of
building the system for the first domain. The finished results of those
activities are transported intact to the systems for the other domains. The
dpproach follows from and builds upon the techniques used in the "skeletal
systems" developed to assist implementation of expert consultation systems for
specific classes of problems.

This report describes three alternatives for implementation of a class-
generic knowledge acquisition system for use in developing advanced training
systems. The first would implement an architecture and knowledge acquisition
aid for eliciting from an expert the knowledge needed to perform automatel
performance diagnosis of a trainee during learning. The automated aid would
acquire an instructor's knowledge of potential errors in task performance and
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other performance deviations needed to support automated performance diagnosis
during training sessions.

The second alternative knowledge acquisition aid would capitalize on
ongoing efforts to develop "intelligent" automated opponents in tactics
training systems. In this case, the aid elicits elaborations of alternative
(possibly sub-optimal) opponent tactics and knowledge of when during training
to invoke these alternative behaviors to achieve pedagogical objectives.

The third alternative extends a prior Navy research and development
effort that implemented a prototype generic instructional system. That system
uses instructional "games" to assist trainees in the memorization of domain
facts and relations. It has already been applied to several different
domains. However, building new domain knowledge bases for the system remains
a costly and lengthy manual process. This alternative would aim therefore at
implementing a more cost-effective automated approach to building knowledge
bases for this existing prototype system.

These three alternatives for pursuing the concept of a class-generic
automated knowledge acquisition aid represent a range of tradeoffs among
issues involving cost, payoff, and feasibility. The tradeoffs cannot be
resolved on purely technical grounds in favor of any one of the alternatives.
Instead, Navy priorities will need to be considered in selecting an
alternative for further development.

Analysis of the knowledge engineering process and human factors
considerations led to a set of guidelines for the development of user
interfaces to these systems. These guidelines emphasize system
characteristics required to insure the utility of the knowledge acquisition
aid to Navy domain experts.

Discussions of user interface design issues for the class-generic
knowledge acquisition aid were held with several Navy domain experts and
training system developers. These discussions provide some guidance for the
pursuit of any of the alternatives. The most significant and consistent
opinion expressed indicated that the medium of human-machine interaction--
frequently the focus of so-called "user-friendly" interface design--is not
likely to be the crucial factor in determining the utility of a knowledge
acquisition system to Navy domain experts. Rather, discussants emphasized the
need for conceptual suport for the knowledge specification task in the user
interface anJi~ flue importance of selecting potential users with some computer
skills and high motivation to use the system. They perceived high motivation
to contribute to a system development effort as the sine qa non for effective
atitomated knowledge acquisition: the best user interfa-ce wouIT-not be
sufficient to support use by domain experts arbitrarily assigned to work with
ai system development team. Given high motivation and some computer skills
(which dre Increasingly widespread among Navy personnel), conceptual support
from the tiier Interface becomes the most critical design issue.

An interface to a knowledge acquisition system should provide several
types of conceptual support. These include (1) adaptive control of dialogue
initiative, (2) user access to information about prior and potential future
contexts for his activities with the system, and (3) feedback about how
knowledge supplied by the user affects the behavior of the training system.
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The architecture of the knowledge acquisition system and its interface should
therefore include intelligent dialogue planning and interaction management
functions. Further, it should provide a flexible interface to the target
training system for experimentation with the incrementally developed knowledge
base supplied by the user. Detailed design decisions regarding interaction
media and protocols can only be resolved when the characteristics of the
domain class and features of the training system's own architecture have beenI identified.

Two activities therefore emerge as critical steps toward the development
and implementation of any of the three alternative knowledge acquisition
concepts. First, research must focus on the problem of characterizing and
representing class-generic knowledge necessary to capture training expertise
in a variety of domains. Second, techniques must be devised to use this
knowledge in an appropriate system architecture providing conceptual support
for the user during knowledge acquisition sessions. Further design of low-
level interface details can be deferred at least until a prototype system
accessible to motivated, skilled users has been developed.

4
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PREFACE

The application of knowledge-based modeling techniques to training
simulators appears likely because of increasing pressures to make these
devices more "intelligent." There is an emerging requirement to decrease the
instructor/student ratio for simulator-based training. This requirement is
dictated by logistical considerations. In order to counter this potential
threat to training effectiveness, intelligent training devices implemented
through knowledge-based models could be developed to augment the instructor
cadre. Instructor functions would be provided in the form of software models.
This will allow the instructor/student ratio to be reduced without reducing
the amount or quality of instructional guidance.

The Human Factors Laboratory at the Naval Training Equipment Center has
been pursuing research related to the development of intelligent training
devices for over a decade through research programs in adaptive training,
student performance measurement, and part-task training. It is becoming
apparent that such functions can most effectively be implemented using
concepts borrowed from the artificial intelligence research comm'unity.
Attention is being focused on knowledge-based models, in particular, expert
systems.

The current development cycle of an expert system is very lengthy and
consumes a great deal of resources. Making the implementation process more
efticient would support the application of these knowledge-based models to
simulator-based training. In particular, the knowledge engineering process
has to be streamlined. The present task was initiated to investigate the
possibilities for reducing resource expenditures during the process of
knowledge engineering. The stated goals were to determine the extent to which
the process could be automated and to make recommnendations concerning the
conditions under which such automation would be practical. Clearly, knowledge
engineering is a complex cognitive activity and a general, completely
automated procedure cannot be supported by the current state of technology.
However, it appears that a workable system can be developed to automate
certain phases of the knowledge engineering cycle for particular classes of
expert models. This report details the procedures followed in reaching this
conclusion.

Robert Ahlers
Scientific Officer
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SECTION I

INTRODUCTION

BACKGROUND

Much training in the Navy and other military services requires closely
supervised, intensive, and highly technical instruction on a complex task. In
many cases, such instruction is provided by a training specialist in
conjunction with a training simulator. Simulators are typically designed to
develop and extend knowledge and skills that are impractical, expensive, or
impossible to exercise within operational environments. Typically, such
simulators provide practice on the target task but little or no instructional
feedback on trainee performance, skill deficiencies, or coaching on correct
behavior. Human instructors must therefore observe trainee performance and
provide appropriate instructional interventions. However, in many cases,
skilled Navy instructors are in short supply relative to the number of
trainees, and the quality of instruction can vary from individual to
individual.

Recent work on "intelligent" simulators is leading to the development of
simulators with instructional capabilities in addition to simulation of
operational equipment and situations. These training simulators will embody
"ssurrogate instructors", which, in conjunction with human instructors, could
better provide trainee performance evaluation and adaptive training. Such
augmented training capabilities can significantly increase the cost-
effectiveness of simulator-based training and extend the availability of
individualized instruction.

Research on surrogate instructor technology (also called Intelligent
Computer-Assisted Instruction [ICA11) has utilized artificial intelligence
techniques to represent conceptual knowledge about the problem domain, expert
and trainee performance, and instructional methods. Many of these techniques
are derived from those used in so-called "expert systems"--knowledge-
intensive, high-performance programs designed to serve as automated
consultants to domain experts. A recognized bottleneck in the development of
expe't systems and hence surrogate instructor systems is the human resources,
time, and cost required to articulate the expert domain knowledge and to
encode it in software. Current approaches involve frequent, long-term
interactions among a team of highly-trained knowledge engineers and domain
Pxperts;. While some technology has been developed to assist knowledge
engineers in developing expert consultation systems, it has not reduced
requirements for person-to-person interactions that account for much of the
development time and cost. The application of technology assistance to
developing surrogate instructor systems has lagged behind expert systems
development, and little work has addressed the requirements for surrogate
instructional systems insofar as they differ from expert consultation systems.
Therefore, a need exists to identify technological opportunities to facilitate
and streamline the task of articulating expert knowledge to be used in the
development of an automated instructional system.

13
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APPROACH

The current project sought to define a set of feasible, high-payoff,
research objectives for the automation of the knowledge elicitation process.
As a first step, a review was made of the available documentation of previous
and current expert and instructional system building efforts. Particular
attention was given to those projects attempting to develop tools to aid the
system building process and to provide generic system capabilities.
Conversations with other knowledge engineers provided insights into the
difficulties and pitfalls of designing expert systems. In addition, these
individuals provided useful comments on the design concepts developed to meet
NAVTRAEQUIPCEN requirements. Finally, interviews with domain experts and
training specialists in the Navy elucidated system design constraints dictated
by characteristics of target users and the operational environment.

Early on in the review and analysis effort, it became apparent that the
present state-of-the-art in the field of expert systems can not support a
detailed generic design for surrogate instructor systems. Variations across
domains and desired system capabilities require different representations for
knowledge and different mechanisms for applying it. As of now, no single,
uniform representation of concepts, relations, procedures, and strategies has
been found sufficient to capture domain expertise in a wide variety of
*loma i S.

In addition, it became clear that the software modules in a surrogate
instructor system that use the domain knowledge can not be independent of the
epresentations or their use. This dependence also extends to software that

would aid the development of surrogate instructor systems. In particular,
details of an effective user-interface design for acquiring domain knowledge
from an expert depend on the knowledge representation. Generic human
engineering principles for interface design are only rough guidelines to
system development, and their application requires more detailed
interpretation with respect to the target system's specific features and
implementation. Thus, we concluded that an intelligent, generic system
intended to support the development of any surrogate instructor system was not
feasible given the current technology and state of knowledge in expert
systems.

Wo therefore worked to determine a more restricted concept of generality
for in autt,)i,.ted knowlsdge acquisition system. Using this concept, we
Itt ttiptodr to ,1 tici dat, (1) a design for a knowledge acquisition system
spetified to the extent possible without committing to a particular surrogate
instructor system architecture, (2) a set of alternative interface concepts
consistent with the design for which additional work could be realistically
undertaken to produce a useful system, and (3) a set of issues that must be
resolved in such additional work.

The concept we developed addresses generality for an automated knowledge
acquisition system at the level of a class of tasks, each member of which can
ne adequately served by a fixed set oT surrogatfi 6structor capabilities and
knowledge representation formalisms. The notion of such classes is largely
intuitive: a characteristic of members within a class is congruence of high-
level semantic and pragmatic aspects of domain knowledge, which we will refer
to as class-generic knowledge. However, regardless of its intuitive nature,

14
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in our work we have found that consensus exists for the definition of some
such classes of tasks.

This report presents the results of our research to specify and elaborate
a design for an instructional knowledge acquisition system. Section
II presents a model of the knowledge engineering process and describes the
activities required to build an intelligent instructional system. This
section indicates how particular features of that process preclude the full
generality NAVTRAEQUIPCEN sought in its original concept. Section III reviews
selected research on tools to assist expert system building. This review
illustrates more concretely the factors that limit generality. Section
IV presents our general system concept, and a set of criteria to be considered
in evaluating alternative realizations of the concept. Three alternative
specific concepts are then presented that differ with respect to these
criteria and to the specific instructional capabilities of the systems they4 serve. Section V introduces a set of user interface design issues and
describes interviews conducted with system builders and domain experts to
determine how those design issues might be resolved in realizing our system
concept. Section VI presents an architecture for implementing those functions
and interface features of the system concept that can be specified without
further commitment to the class of tasks and the host system's capabilities.
Finally, Section VII reviews the conclusions and recommendations derived from
the research.

15A
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SECTION II

THE KNOWLEDGE ENGINEERING TASK

Planning effective automation for aspects of any complex task requires an
analysis of the task and development of a process model of the task. This
model is required both for determining what task components to automate and
how that automated system should interface to the people who will use it.
TFWis section presents an analysis of the knowledge engineering task and a
model that describes the relationships among task objectives, the activities
that attain them, and the knowledge required by those activities.

WHAT IS KNOWLEDGE ENGINEERING?

Knowledge engineering is the process by which a class of computer
programs called expert systems are created. These systems are built to aid or
perform tasks thif are very k-nowledge intensive, typically require inexact and
imprecise reasoning, and for which the expertise for performing the task
resides primarily with a very few human "experts." These tasks involve some
form of situation interpretation, decisionmaking, and/or planning. The best-
known examples of recent expert systems include programs for medical diagnosis
(Shortliffe, 1976), chemical analysis (Lindsay, et al., 1980), geological
analysis (Duda, et al., 1q78), and planning compue -system configurations
(McDermott, 1980T. Knowledge engineering differs from conventional software
engineering in (1) the nature and extent of the interaction between the
knowledge engineer(s) (KE) and the domain expert(s) (DE), and (2) the types of
s6fwaFede-sign-an-d-implementation foo-61-s use -

The KE is more dependent on the DE both prior to implementation and for
[ ost-iwplenentation testing than is typical in other software engineering
efforts. Because expert systems are knowledge intensive, knowledge
elicitation is one of the KE's major technical objectives. It alone generates
a need for frequent and prolonged interaction between the KE and DE prior to
and during implementation.

Knowledge acquisition has proved to be a complex and difficult process.
The knowledge that must be incorporated into an expert system is largely non-
numerical and imprecise. It is usually expressed as an extensive body of
concepts, rules, and approximate methods. The term heuristic is used to
describe both this type of expert knowledge and the tje-o programming a KE
uses to operationalize it. The expert's heuristic knowledge is often tacit
and thus difficult both to elicit and articulate. Determining whether the
evolving knowledge hase is consistent and when it is complete enough is
therefore a major problem for the KE and DE. This fact and the imprecision of
heursqtic knowledge increase the KE's dependence on the DE for debugging,
,valuating, and tuning performance of an expert system. Thus, knowledge
acqiiition typic,,lly continues well into the implementation stage.

The data types and control structures of conventional progranming
formalisms are not conceptually well-suited for describing heuristic knowledge
and for developing expert systems. They do not provide an organizational
framework for knowledge acquisition and lack good facilities for debugging

16



NAVTRAEQUIPCEN 82-C-0151-1

knowledge-intensive code. Research on expert systems has therefore evolved
representation languages, symbolic programming languages, and rule-based
problem-solving architectures to allow more intuitive and transparent
operationalization of heuristic knowledge on computers. In addition,
specialized system-building tools have been developed (e.g., Davis [1977],
Reboh [1981]) to aid the KE in encoding knowledge into specific
representations and in testing and refining an implementation. (Section
III reviews these design and implementation tools.) These tools are designed
to be used interactively; hence, they enable and support the incremental
system building and testing necessary in expert systems.

THE PRACTICE OF KNOWLEDGE ENGINEERING

As a research area, knowledge engineering--a sub-field of artificial
intelligence (AI)--is about 15 years old. The total number of practitioners
is under 300 internationally, mostly located in universities. Only very
recently have serious applied and commercial development efforts outside
academic research centers been undertaken. The academic focus has been on the
individualistic, innovative, and high-risk features of research in an emerging
field rather than on systematically reducing to practice the process of
knowledge engineering. As a result, the constru~tion of expert systems is
still more of an art or craft than a discipline.

Knowledge engineering is a highly intellectual and individualistic
process, although it is not uncommon for several KEs to work together on a
project. KEs generally hold graduate degrees either in computer science or
cognitive psychology and are familiar with the concepts and methods of Al.
However, they receive little formal training on how to build expert systems.
Instead, they acquire the necessary skills, usually as graduate students, in a
loose apprenticeship system under the supervision of more experienced
practitioners. As in any apprenticeship program there Is considerable
variability in supervision. Progress in learning knowledge engineering
through hands-on experience is impeded by a lack of precise criteria for
assessing a KE's performance. Furthermore, it is not obvious at what point
someone becomes a qualified knowledge engineer.

Without exception, documentation of existing knowledge engineering
efforts describes numerous false starts and revision cycles prior to achieving
a system of any practical value. This characteristic may reflect in part the
academic research setting of the efforts and its tendency to encourage
inventiveness and discovery of alternatives even after existing efforts have
demonstrated workable methods and tools. However, there are substantive
limitations on the process of building expert systems that are more important
for explaining its characteristics. First, there are problems in for'mulating
initial system specifications; existing experience is either too limited or

-.. . . . .

lArguably, the same remark could be made about other software engineering as
well. However, this field is more mature and considerable effort during the
past decade has attempted to organize and standardize the production of
conmmercial software.
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has not been sufficiently analyzed to determine exactly what an effective
expert system for a task domain should do. Second, there are problems in
implementing system specifications; there is a similar lack of experience or
understanding regarding the relationship between a set of specifications and
appropriate m~thods and tools for achieving it. At least at this point in
time, the knowledge available to the KE from prior efforts for generating and
evaluating designs is heuristic--as heuristic as the domain knowledge he
himself must acquire and operationalize to build an expert system. This use
of heuristic knowledge by the KE accounts in part for the iterative nature of
the knowledge engineering process. It also suggests that analyzing and
modeling what the KE does, in order to consider how to automate aspects of
knowledge engineering, may itself be viewed as an exercise in knowledge
engineering. However, the scope of the knowledge engineering task is
considerably broader than that of any task for which an expert system has yet
been built. Modeling the knowledge engineering task is therefore important to
permit identification of smaller, relatively independent activities that might
5e feasible candidates for automation.

A COGNITIVE TASK MODEL OF KNOWLEDGE ENGINEERING

The design of automated knowledge engineering functions first requires a
cognitive task model specifying the task's activities and the relationships
among them. The naive approach to introducing automation suggests that where
implementation is technically feasible and cost-effective, the machine should
perform all activities in which its productivity exceeds that of the human.
This approach overlooks the need to consider the nature of the human-machine
interaction that must occur. When activities are divided, those that are
retained by the human may include some that depend on knowledge and
information generated by activities assigned to the machine. Likewise, the
machine may be dependent on knowledge generated from the human's activities.
A cognitive task model specifies how tasks depend on knowledge and information
generated or modified by other tasks. Thus, the model can be used to
determine what knowledge must pass the interface between human and machine and
the frequency with which that interface must be used. It can show that
dlthough some tasks can be performed better in isolation by the machine, the
cost-effectiveness or viability of the overall system requires that those
activities be retained by the human. Although human performance is remarkably
flexible, ill-considered human-machine architectures can overwhelm human
cognitive capacity and endurance or impair motivation for using the system.

A cognitive task model is therefore an important tool in determining both
what task components to automate and how to design the human-machine
interface. It enables an understanding of how the attainment of objectives is
shaped by requirements for knowledge, performance factors and external
constraints. This understanding permits a design for automation that can
enable a human-machine "team" to to attain the task objectives more
effectively or efficiently than can a human working alone.L The model of the

'It might also lead to a conclusion for some tasks that automation woulj not
ht)- frasible or cost-effective.
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knowledge engineering task postulates activities performed by three
participants: the customer (the ultimate end user and perhaps the financial
sponsor of the knowledge engineering product), the knowledge engineer (the
designer and implementor of the system), and the domain expert (the source of
domain-specific knowledge).

Figure I summarizes the knowledge engineering process as the interacting
objectives and activities of these participants. It presents the set of tasks
as a flow chart indicating the ordering of and dependencies among the various
activities involved in a knowledge engineering effort. Because we have
summarized the process in flow chart form, the objectives and tasks may appear
to have a "natural" linear order. However, this appearance is deceiving, for
it presupposes a mature design science for building expert systems. The
ability to design a system successfully (i.e., so that the first
implementation of the design performs acceptably) requires (1) a set of
general design principles, (2) knowledge required to apply the design
principles to the particular problem at hand, and (3) a method to determine
that the resulting design is complete and satisfactory. In the knowledge
engineering process, there is no comprehensive or generally accepted body of
knowledge for meeting any of these requirements. Therefore, achieving a
workable design most typically requires the interaction among component
processes of design, implementation, test, refinement, and redesign. No one
if these processes proceeds in isolation; rather, several are simultaneously
active and under consideration. Thus, a linear stage model has inherent
limitations as a description of this complex process.

An alternative to the linear model is a class of models that accommodates
the simultaneous operation of multiple cooperating processes. These models,
called blackboard models, have been used to model other complex cognitive
process6 s1Fc- pTan-nng (Hayes-Roth, 1980; Thorndyke, McArthur, and
Cammarata, 1981), decision making (Thorndyke, 1982), speech understanding
(Erman, et al., 1980), reading (Rumelhart, 1976), and sensor interpretation
(Nii, et-l-, 1982). We believe that an attempt to develop a detailed
computatidial model of the knowledge engineering task might profitably adopt
this modeling approach, since the non-deterministic order of activities is
easily accommodated by this framework. However, one limitation of blackboard
models is the difficulty of representing and illustrating succinctly the
individual activities required for task performance or the relationships among
them. In this respect, the linear model is superior in its ease of
illustration.

Since a clear explication of the knowledge engineering process is
fundamental to the subsequent understanding of recommended proposals for
automation of components of that process, we have chosen to illustrate the
knowledge engineering process as a linear model, as shown in Figure 1.
However, we recognize that the nominal sequential order impllied by the figure
is not a strictly accurate characterization of the way in which knowledge
ongineering proceeds. In recognition of the non-determinism in the order of
,ictivities, we have used an unconventional notation in the flow chart shown in
rigure 1. Several of the branches leading from decision boxes lead to
multiple points. This notation indicates that any one of the indicated
activities can be undertaken next depending on conditions not represented in
the flow diagram.
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Strictly speaKing, the KE's primary objective is to create an operational
expert system that solves a problem for his customer. Six major technical
objectives must be attained to create an operational expert system:

a. Definition: Specification of the capabilities the system will
exhibit.

b. Knowledge Acquisition: Description of the knowledge--concepts,
facts, an-i ro 1-em-s-o-v-ngmethods--needed to achieve the specified
capabilities.

c. Formalization: Organization of the knowledge using formal
rep re senf-a-f ion- Tgui46iges.

d. Desi n: Determination of hardware and software architecture.

e. Implementation: Implementation of the encoded knowledge,
procedures, id-a -- r-Tnterf ace.

f. Testin: Evaluation and refinement of the system.

lheso si\ objectives are similar to those described elsewhere (see, for
example, Puchanan, et al. [1983] and Reboh [19811). In examining how the six
objectives have oeen--aliffressed in prior systems, it is important to note that
most previously developed expert systems are products of R&D environments. In
these efforts, creating a working system was often secondary to performing
successful science (e.g., the development of new knowledge representations,
problem-solving methods or system-building tools). This difference in the
primary motivation of R&D and of potential product-oriented applications is
important because it leads to different subobjectives for the six major
technical objectives and entails different external constraints on the KF.
For example, in academic research the objective of Formalization may entail
inventing a new representation. In an applications effort, on the other hand,
external constraints may strongly discourage the KE from inventiveness in
favor of selection from existing representation languages. In fact, as we
will explain later-, he may even be constrained a priori to use a particular
representation language. Thus, in developing a-tas-k-odel based on prior case
studies, we took into account how academic research motivations affected
pursuit of the objective of building a working system. By so doing, we have
oriented the model toward use in designing expert systems in product-oriented
environments.

The remainder of this section discusses the model in detail. We
structure our discussion around the KE's six technical objectives listed
above. For each, we first present its immediate subobjectives and then
(onsider in detail

- the knowledge the KE brings to the task for attaining that objective

- its dependencies on both other technical objectives and external
constraints
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the types of activities that achieve it

- the criteria by which the KE monitors progress on it.

A. Definition Objective

Subobjecti yes

Generate potential system capabilities
Identify customer and DE problems
Identify opportunities for technological enhancement
Identify user interface requirements and constraints

Select target capabilities
Identify cost-effective candidates
Identify technologically feasible candidates
fetermine cotInitively feasible capabilities

The Definition ohjective entails determining the performance capabilities
of the expert system and how it will interact with users. A planning or
decisionmaking task, for example, might require information interpretation,
option generation, option evaluation, and option selection activities. An
expert system might assist the user with any of these, depending on the
approach to cooperative man-machine problem-solving the customer desires. In
3ddition, cost-effectiveness, feasibility, and other constraints on the
expected use of the system will influence which particular capabilities are
selected.

The major subobjectives of capabilities definition are (a) generation of
candidate capabilities and (b) filtering those candidates to produce a target
set satisfying the various criteria. The system's desired capabilities are
initially motivated by problems in performing the task. Ordinarily, these are
rr3rent and have motivated the customer's initial decision to consider an
e lert syt-'1. They may be documented in written materials hut can be :oTt

ilearly defined through interactions between the KE, the customer and DF.
Typically, ti improvement sought in the expert system entails lowering the
f:()-,t, incr,,asinj the speed or reliability, and/or improving the accuracy of
t~i'k Iperforio-,.r, rel itive to the current method,.

f ,r the K[ to comprehend the difficulties the customer and DE perceive in
the;r tvsk--and to evaluate differences in the perceptions of the customer and
the E --he neds some knowledge of the task and how it is performed. If the
KF is initially ignorant about the task domain, his initial interactions with
the customer and DE must provide an introduction to the domain. This
introduction explores the general objectives and methods of the task as it is
currently performed. The KE develops the foundations of a task model using

3We distinguish the customer, or sponsor, of the effort from the DE for the
sake of generality. In particular cases, the customer and the DE may be the
same individual, or the DE may represent the interests of the customer to the
KF.
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his knowledge of modeling irameworks. As he adopts a general framework, he
can take some initiative in seeking additional information he needs. Much of
the domain knowledge the KE elicits in these initial interactions will not be

encoded in the ultimate system.

Once the KC has i basic unders;tanding of the task domain, he can iuide
the exploration -)f the problo;ns tho customi-r an,' f) perceive and characterize
their performance and cost ,ittritbutt . initi ative b) the K1 is important it
this poi nt to fof is tho interactinns . Togither , the K , customier, and :,[1 coin
*.hen acri ye ,c i set of pfrformwo e cipal i i ties that would remnedy the
-dentified problMo!s.

'he cuctomoyr Ind 'P 'st al s ; r'ovide inrformt ion, atb t the intended
useor-, of the sy';t.inil the, onvironi nent in which it will be useod. T hi s
knowledge ( is ro er('i hy the- KA t loatermlne alternative user' interface
capaoilities For the sy en he irior experience of the users with
interactive comnputing ,ysteins, their motivation and ability to use the systemn,
and their technical knowledgle .f the domain--if it is different from the
DE's--are all considerations in designing the tiser interface. For instance,
interface Capabilities that depend on typed input car, be inappropriate if
users cannot be motivated to learn or use typing skills in their work
environment. This particular fact ha'; been learned too late by designers of
some comlrercial software systems oriented toward managers.

Another type of constraint that may influence system capabilities an1
interface design involves hardware or softwaire requirements. The customer a

have cost coos ideritieon-, exi stingi~ equipment, or orq'lni zationai polliiciefs that
'iictate the us-- of a poirt iculkar system. If s(,, the capabilities provided by
this system may either, ,estrict or present opportunities for the use of
certa in interface a edi a, software pack.-jes, ard nrogra~ini og 1 anguage]s.

beie he is, in )nlrtr f the do-aiq i nd to constroirts.- on s~e
li'v'apme t ( t.Iu idi mea. di tiona,. andidat'' (an,mil1i tie.l For t~lr

,Ys tfi ba-sed ru' tichnol 1)1cril opportun ity. b5 recogni ~i ri that the task
shaires featcure, Wi th "ot-her-s Yor w-h~c-h expert sys te!rn' haive beer boil t, the K
1iaV rnpo-p to inc~ludv' capabilities present in th)ose systems. The decision to
incl ude such m~ai1ite ay inv.olve consideratins r, ot apparent to the
customer and the OF. or examp'te, the decision sybe based on the KE's
knowledge that the cipaility is an easy enhancement-one which may be
virtually "free" because the knowledge it requires will already be used to
implement another capability. The XE's ability to realize technological
opportunity in generating capabilities is dependent on his knowledge of prior
oxo)ert systersi- and his abhility to draw analogies from features of those

svsem o the- cur ront task.

Thre ;e 0nlmrjecrti yr in c apahil ities defini tion i, fil1terin(,, the
coli date ca~bii sto produce a target set. 11he primadry select ionr
ri teriji ar throst-enf expectation ror a capailii ty, the tochnolo i icl

f'asihi li ty of a) ipah ity , and the ' veral 1 operati onal coherence of h
tar'I.'t xft. r 0 5 t 0-benet it Pval joition depend,; oni M the resources the ktostan'r

i.will inil to ilOt fur rievcloping and operating an expert system; k' ) th-
1' Iility r'' f ,tiroto the devel opmnent effort and computational resource; i

m'31prhility will require; and (23) the beliolfs that the K , the customer, d
the .V have about the value of enhancing existing task performance.

24



NAVTRAEQUIPCEN 82-C-0151-1

Technological feasibility becomes a difficult issue when there are no
precedents for implementation of a capability or when there are initial
constraints. The KE must estimate the risk involved in pursuing development
of the capability and a joint decision must be made about whether the risk is
acceptable.

In addition to eviluating capabilities individually, the coherence of the
entiro operational concept must be considered. A piecemeal system with
loosely-coupled component capabilities may be inefficient and difficult to
use. The set of capabilities must be evaluated with respect to overall
implementation and support requirements and to the task model the KE develops.
The model is used to consider how dependencies among candidate capabilities
should determine the composition of the target set. For example, suppose
among a set of candidates were included an automated deduction capability and
a hierarchical explanation capability. Suppose that for either cost-benefit
or feasibility reasons a decision was made to eliminate or at least
substantially change the deduction mechanism. If the purpose or expected
benefit of the explanation capability depends in some way on the deduction
capability, then it too must be eliminated or modified.

Interface capabilities must be considered again at this point as well.
The interfaces t,) different capabilities must be coherent with one another and
with user requirements. To the extent that the cost-effectiveness or
feasibility of specific technical capabilities are linked to these interface
capabilities, the technical capabilities may themselves need to be
reconsidered. For example, suppose there is an option generation capability
in which the user can supply constraints and an interface supporting quasi-
natural language. The KE may determine that the interface will be
inappropriate for expressing constraints. One or both capabilities may then
need to be revised or eliminated from the target set. In that case, other
capabilities that depend on them may need to be reconsidered as well. Thus,
while individual capabilities may be filtered for singular reasons, each
addition or deletion from the target set may entail ramifications for other
capabilities already included or excluded.

According to one source (Buchanan, et al., 1983), difficulties in
initially defining system capabilities are- aong the major causes of the
inefficient process of iterative development and revision in knowledge
engineering. A major contributor to these difficulties is the "knowledge gap"
hetween the KE, the customer, and the DE. This gap is inherent in the
knowledge enuineering task, since a defining feature of an expert system is
its codification knowledge known only to a few specialists. Only some of the
OL's extensive task knowledge may be needed to implement system capabilities,
hut almost all of it is relevant to selecting which capabilities to implement.
The OFl may have difficulty articulating this knowledge, since it is tacit and
id hoc. The KE is an expert in modeling and programming formalisms unfamiliar
'von to thoso who use computers in more routine applications such as data
pruo .sinq and data base management. The customer and the DE may themselves
!,ivo varying perspectives on the task and the reasons for seeking to apply
expert sy';tems tPchnology. The customer is typically a manager who may not
have current technical knowledge but who may have a perspective on the
organizational context surrounding the DE's task. Definition of capabilities
requires the exchange and integration of these different types of knowledge,
nerspectives, and technical vocabularies.
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The difficulty of rapidly bridging the knowledge gap is thus a
significant factor mitigating against a successful one-step effort to define
system objectives. However, even if a single person qualified as KE and as DE
for a task, other factors would cause revisions of initially targeted
capabilities. These factors, to be elaborated in subsequent discussion of
other technical objectives, involve the incomplete and uncertain nature of
current expertise in knowledge engineering. During the phases of Knowledge
Acquisition, Design, Implementation, or Testing, initial estimates of cost or
feasibility may have to be modified, creating a need to modify the targeted
system capabilities. Since Knowledge Acquisition, Formalization, Design, and
Implementation depend on the targeted capabilities, changes in Definition will
then necessitate revision of efforts in these phases as well.

To sunnarize, Definition is the most crucial technical objective in
determining the course of a knowledge engineering effort. Our conclusion is
that several factors preclude an initial viable definition of capabilities.
This )imitation is one major reason that knowledge engineering is highly
variable and iterative in the way it pursues its objectives. The most salient
factor is the knowledge gap among the participants, which inhibits the
communication required to define the desired expert system. We see no purely
technical approach to reducing the knowledge gap more rapidly. Another
important factor is the heuristic nature of the KE's knowledge for system
design and implementation, which may be inherent or may simply reflect the
present immaturity of the emerging discipline of knowledge engineering.

B. Knowledge Acquisition Objective

Suhobjecti ves

Identify knowledge categories required by targeted
system capabilities
Elicit domain knowledge from DE
Informally structure knowledge

The Knowledqe Acquisition objective refers to the accumulation of the
specific knowledge required to support implementation of the targeted system
,apabilitirs. As discussed above, domain knowledge is also elicited in
pursuing Othe'r objectives of the knowledge engineering process. In all cases,
the a(tivities involved in collecting domain knowledge may be nearly
identical: interviewing the DE, observing the DE, reading printed
(!escriptions, etc. However, depending on the technical objective that is the
,-'s current focus, the form and sequence of questions and the organization of
answers, observations, and notes can differ. Roughly speaking, the KE is more
interested ir the "what" (the goals) of the DE's performance when defining
system objectives and in the "how" (the methods) when pursuing Knowledge
Acquisition. The specific knowledge that needs to be acquired is determined
by what capabilities have been targeted. The KE's ability to characterize the
nature and scope of that knowledge and to develop a plan for acquiring it
efficiently depends on his knowledge of prior attempts to build similar
systems. At the present time, that knowledge can provide guidance but not
detailed procedures for the KE to follow (see, for example, Buchanan, et
j]. I R3). The prior case stt iies available to the KE are limited bo7th in
r',,- ani in the types of tasks considered. The formulation of a rough

.pyi ' njbetween ta,,k characteri stics, expert system capabilities, and the
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knowledge and techniques needed to achieve those capabilities is just now
becoming possible (see, Stefik et al. [1983], for one attempt to specify this
mapping). Therefore, even the -st--informed KE cannot specify a Rriori the
questions and observations that will provide the knowledge needed to implement
a capability, even one similar to that in another operational system.

The knowledge gap between the KE and DE that affects Definition also
affects Knowledge Acquisition. The KE initially does not have the domain-
specific semantic and pragmatic knowledge needed to evaluate and organize the
DE's statemCnts or to direct interactions into related or important areas of
knowledge. The DE doesn't understand the KE's techr-cal objectives and
methods and may have difficulty articulating his knowledge; thus, he is rarely
in a position to assume initiative. Therefore, to manage Knowledge
Acquisition interactions, the KE must depend on relatively domain-independent
syntactic knowledge, based on a general framework for viewing tasks of this
type 5e.g., interpretation, diagnosis, etc.) and later based on the
representation language he selects.

General frameworks for expressing task descriptions provide a few
fundamental concepts to describe and relate goals, procedures, and data. They
provide a simple uniform syntax for structuring Knowledge Acquisition
interactions. The most typical method is top-down progressive expansion of
detail. Knowledge acquisition concerning goals involves characterizing their
dependencies: relative priorities, enabling relations, and constraining
relations. Such characterizations frequently include judgments of degree of
belief or certainty. Procedures are characterized in terms of their enabling
and triggering conditions, the more primitive actions they integrate, the
resources they require, and their effectiveness. Data are characterized by
their source, their application, and often judgments of reliability. In using
a general framework for describing knowledge the KE relies upon ad hoc natural
language, if-then rules, and diagrams for representation.

Once the KE has selected the representation language(s) the system will
use (part of the Formalization objective), that language can be used to guide
Knowledge Acquisition. Representation languages provide a more detailed
syntax and general semantics for describing goals, procedures, and data. They
allow the KE to pose more precise requests for knowledge than do general
frameworks. At the same time, selection of a representation is a commitment
that excludes sone domain knowledge from the KE 's consideration and usually
,hanip-s how the KF pur';ues his several objectives. Frim that point, the
,tt:tivitif-s for acquiring knowledge and formalizing it are often tightly
Joupled. ,sI) cially when the KE can also implement the knowledge base
incre:ientally. Vven with this coupling however, knowledge acquisition does
not become a passive, mechanical process for the KE; active interpretation and
integration are still required (Buchanan, 1981).

One problem with syntactically-driven approaches to structuring knowledge
acquisition interactions is that they can confuse or irritate the DE because
transition; and emphasis may not cor.espond to his intuitions about the
structure of the domain knowledge. Until the KE becomes more familiar with
the domain and can use semantic and pragmatic knowledge to guide elicitation,
his options for overcoming the problems of syntactically-driven interactions
are limited.
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One method of improving dialogue management involves varying the focus of
elicitation. At the least, the KE can employ some content-free heuristics to
modulate repetitive patterns of interaction, which can easily result from
strictly depth- or breadth-first, top-down exposition of task goals and
methods. Depending on the modularity of the system's intended capabilities,
the KE might also direct elicitation toward knowledge specific to each
capability in turn, perhaps in order of importance or of planned
implementation.

Alternatively. the KE can use syntactic methods in a bottom-up manner
that gives the DE more initiative in controlling transitions and emphasis.
The must prevalent method is to orient interactions around real or
hypotheti,,.l task situttions or cases. Using case generation, even a
rlatively inarticulate IE can usuaTly share the initiative with the K1. Once
the OF. has dscribed an "important" case and how it should be treated, the KE
c-an uSC syntactic methods to extend and elicit the knowledge necessary to
analvze that case. When appropriate, the KE can use structural features of a
representation to prompt for related cases. For example, the KE might ask,
"is there a case in which the procedure you just described is omitted?", "Is
there a case in which those two goals have the opposite priority?", or "Is
there a case in which those data have different implications?". This type of
prompting must be undertaken judiciously, since such questions may be
misdirected and anomalous from the DE's perspective. Until he acquires some
semantic and pragmatic knowledge about the domain, the KE's best tactic is to
promote the DE's generation of interesting different cases. The KE can then
build his knowledge of the domain by inferring the dimensions along which the
')r ohooses to el3boratP and sequence cases.

There are at least three limitations of relying on interactions built
.round ca,;es. First, multiple cases may contain much redundant knowledge.
Fach subsequeot (-ase therefore provides less new information, while the time
required to discuss them may not decrease appreciably. It thus becomes less
efficient over timle. Second, the interaction over a case riay cover many more
considerations than required for the targeted capabilities. This is, of
course, a function of how narrow the target set is in relation to the full
task and of how much context is required to present a case meaningfully.
Third, the focus of the particular cases generated by the DE may not be
sensitive to any priorities or plans the KE has developed for working on
different capabilities.

These difficulties imply that the KE's dialogue management plan for
knowledqle acquisition can emphasize case-oriented elicitation early in the
process. As the knowledge base grows and other methods for effectively
controlling focus beccme available, case discussions should be used less
frequently. Skilled KEs generally rely on a combination of elicitation
methods including (1) dialogues structured by applying general task
description frameworks and formal representation languages and (2) bottom-up
casfe-strictured dialogues in which syntactic structures are used to derive and
0-eCijte local plans for the interaction. However, the overall set of
activities cannot be planned firmly. Instead, changes in interaction mode dre
triggered by the KE's perception of the effectiveness of the methods in use
for cueinq the DE and the rate at which new knowledge is being elicited. At
present, there is no adequate model for how the K. makes these determinations.
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Another aspect of the Knowledge Acquisition process worthy of note
involves feedback opportunities for the KE and DE. When the process is
undertaken as a series of protracted interactions, the KE may accumulate a
body of knowledge and be uncertain as to its completeness, consistency, and
ability to support the targeted capabilities. He cannot provide the DE with
assurances about progress, yet such feedback is desirable for maintaining the
DE's motivation. Coupling Implementation with Knowledge Acquisition (and
Formalization) is a means for both the KE and DE to obtain feedback that may
alter their approach to Knowledge Acquisition. When systems are built in
development languages that facilitate the rapid coding and testing of
prototypes, the ability to quickly produce and review initial results
typically elicits enthusiasm and increased motivation from DEs. The
requirement for feedback in Knowledge Acquisition is thus another reason
knowledge engineering has typically been iterative and incremental.

To summarize, the pursuit of Knowledge Acquisition is closely related to
the pursuit of other objectives. Definition determines what knowledge needs
to he acquired. Formalization provides structure for managing knowledge
acquisition interactions and for monitoring completeness and consistency of
acquired knowledge. Implementation provides further feedback on completeness
and consistency and enables a more goal-oriented pursuit of knowledge.

C. Formalization Objective

Subobjectives

Select a knowledge representation language
Characterize structure of acquired knowledge
Contrast knowledge characteristics with language features

Translate informal knowledge descriptions into formal
representation language

The Formalizdtion objective encompasses the activities that create a
formal description of the knowledge acquired from the DE using a
representation language. Ideally, the KE abstracts certain features of the
acquired knowledge and selects (or designs) a congruent representation
language. However, there are no objective criteria for determining an
appropriate representation formalism for knowledge with given characteristics.
Formialization is ad hoc with respect both to the definition of knowledge
chi,,',ikterirtics dn w'at they imply for representation. Each KE uses
guidelines hv;ed on his knowledge of previous knowledge engineering efforts
and of knowledge representation research in general.

While representations have considerable similarity in their expressive

power, they have idiosyncratic strengths and weaknesses. The weaknesses
)(time,; prove a representation unsuitable for easily expressing specific

knowledge or for supporting satisfactory implementation of a system
tapability. Since there is no general capability for automatically
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translating knowledge expressed in one representation to another,4 choosing a
representation that later demonstrates weaknesses can create problems for a
knowledge engineering effort. Only very recently has there been any attempt
to propose general principles for matching knowledge characteristics to
representational capabilities (Buchanan, et al., 1983; Stefik, et al., 1983).

The principles that have been proposed for determining a representation
language are derived from successes and failures of prior efforts rather than
from theoretical analysis. Stefik et al. (1983) consider three broad aspects
of the acquired knowledge: the hypote-iesTs space, the problem-solving process,
and the data. These correspond to the goals, procedures, and data of general
task description frameworks. The important dimensions of the hypothesis space
are its size and structure, where structure refers to dimensions, such as
temporal, logical, and semantic, upon which the space can be decomposed and
operated. The problem solving process is characterized with respect to its
homogeneity and its dominant method (e.g., backward-chaining, forward-
chaining). Data are characterized with respect to their certainty,
completeness, and stability.

The guidelines presented by Stefik et al. (1983) are useful, but are only
a first approximation to an understandin-g-oT-how to select or design
representations For an expert system. They are derived from only limited
experience with the potential set of problems to which knowledge-based systems
might be applied. Even within the range of problems that have been
considered, the guidelines are not unique or precise prescriptions and cannot
replace the knowledge a skilled KE uses to select a representation for use in
a new system.

The development of practical knowledge about the strengths and weaknesses
of different knowledge representations for different types of problems has
been impaired, probably more than any other applied knowledge, by the fact
that most efforts to develop expert systems have been dominited by the
concerns of academic research. The rewards have been greater there for
designing new representation languages and associated computational
environments than for intensively analyzing the applicability of existing
ones. Consequently, there has been a proliferation of representation
1,3nguaqes and systems, few of which have been applied seriously to more than
one or, two problem doinains or have been used outside the institution in which
they were developed.

There is also a practical aspect to the result of coupling expert systems
efforts to inventive research on knowledge representation. Few representation
languages have been implemented in transportable, production-quality
computational systems. Thus, unless he has the skill and resources to develop
his own implementation, a practicing KE's choice of languages is limited. If

4Translating between representations is a problem similar to translating
);etween conventional algebraic programming languages. Despite great interest,
little progjress has occurred on the latter problem and there is little reason
to helieve that the capability will be achieved first for the more complex AI
representation languages.
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he does not, then a priori constraints on the hardware and software
environment (e.g.,-as m-posed by the customer) can further limit his options.
When the choice of representation systems is known to be limited, these
constraints are best evaluated during initial efforts on Definition. Doing so
can allow the KE to use knowledge of hardware or software limitations to

circumscribe the system's capabilities and the types of knowledge the system
will require.

Once a representation language has been selected or designed, the KE can
use it to codiy informally represented knowledge elicited from the DE. This
is not necessarily straightforward, since there iray be alternative ways of
expressing the same knowledge within a representation. A common uncertainty
is the granularity with which knowledge is to be described; that is, what
knowledge will be considered primitive and what will be composite. The KE
must determine granularity such that the representation of knowledge is
transparent. Transparency means that the expression of the knowledge should
not be excessively decomposed or contorted from the DE's natural way of
expressing it. Transparency is important in facilitating debugging and
maintenance of a system and for making the system's behavior more
understandable to its users. In particular, it helps make explanation
capabilities in the system congruent with users' conceptions of an appropriate
level of abstraction for understanding problems in the task domain.

When the KE has selected the representation language and has begun to
encode some knowledge into it, he can couple more closely the activities of
acquiring and encoding knowledge, bypassing intermediate informal
descriptions. As described above, this provides mechanisms for dialogue
management using the syntax of the representation. The KE must still,
however, interpret and integrate the knowledge elicited from the DE.

0. Design Objective

Subobjecti yes

Develop system software architecture

Select system hardware architecture

The Design Objective entails formulating the hardware and software
architecture of the system. The process of producing a design interacts with
,ind depends on activities in the Definition, Formalization, Implementation,
and Testing Phases. The resulting design also depends on compatibility, cost,
or equipment constraints imposed by the customer. Constraints on hardware and
!software options may limit Design options and even affect the capabilities

* that can be incorporated into the system. In the absence of strong customer
constraints, the KF can design a software and hardware architecture based on
the most effvctive match between target capabilities and hardware/software
tools and techniques to realize the capabilities. If he cannot customize a
representation language, he will be limited to architectures that can be
realized in an existing production-quality language system. In either case,
the limited number of prior cases from which the KE can draw can create
uncprtainty about the applicability of any particular design to the current
problem and the expected performance of the system when implemented. Prior to
implementation, the type and scope of knowledge obtained during Knowledge

31



NAVTRAEQUIPCEN 82-C-0151-1

Acquisition will suggest to the KE the applicability of the various standard
software design options available (e.g., type of inference system, structure
of the knowledge base, representation of problem-solving strategies,
explanation facilities) and hardware options available (e.g., graphics display
vs. character display, keyboard input vs. mouse input, dedicated processor vs.
time-shared system).

A major task in system design is the integration of the representation
language system that encodes the task expertise with satisfactory user
interface sk ftware and hardware to provide the system's interaction
cipabilities. If the KE is constrained to use a particular software system,
then the representation is a given. Otherwise, he must use basic computer
science skills and AI knowledge to generate a design that will be both
adequate and efficient. While existing development systems from which the KE
may select his programming environment offer user interface facilities, most
are tailored to the needs of a researcher with Al programming skills rather
than a customer or DE. Hence, in developing a finished system for a
commercial or military application, the KE will most likely face a significant
design effort for the user interface features.

Most of the high-level guidelines and knowledge to be used in interface
design (e.g., partitioning of initiative) should have been garnered during
Definition through discussion among the participants. Lower-level design
considerations (e.g., formats, dialogue management, heuristics, etc.) may be
specified during initial Definition, but more likely will emerge during
Knowledge Acquisition and Formalization. These phases will specify in detail
the type and format of knowledge to be acquired from the user or provided by
the system to the user, as well as the structure imposed on that knowledge.
This specification will enable the design of interaction protocols from which
detailed user interface features and characteristics can be developed.
fowever, interface design for knowledge-based systems (or computer systems in
jeneral) is not a mature discipline; again, the knowledge the KE can bring to
hear is ,I'ccoplete and heuristic. In most cases, testing by the DE and
ini tial jse by the intended user population are required to revise the dei J11
and implementation of the interface--another reason for the reliance on
incremuntal system development. In the expert systems field it is typical to
defer low-level interface design and implementation until the implementation
of the-fundim-intal problem-solving capabilities is relatively robust and ready
for use outside the development setting.

F. Implementation Objective

Subobjecti yes

Implement inferential capabilities and user interface
Fncode domain knowledge
fetect and debug programing errors

Implemontation entails coding ti.e formalized knowledge acquired fum thr'
IF in the selected hardware-software environment and verifying that the system
runs without software errors. (Such testing is distinguished from that
undertaken during the Testing phase which assesses the system's effectiveness
ii realizing the target capabilities.) The Implementation process provides
the KE with information that cdn require additional work and revision in the
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Definition, Knowledge Acquisition, Formalization, and Design phases. This
information bears upon decisions that prior to implementation were based on
incomplete and uncertain knowledge generalized from prior system development
efforts. The utility of such information is a major reason that
Implementation has been undertaken incrementally, concurrent with the pursuit
of other objectives, in many efforts to build knowledge-based systems. A
general principle for knowledge engineering urged upon would-be KE's
(Buchanan, et al., 1983) is the early implementation of an experimental
prototype.

The extent to which the KE must code the basic software environment, as
opposed to just the formalized domain knowledge, depends on the representation
language he has selected. User interface software must generally be developed
even if the KE can adopt an existing lanquage system, but its design and
implementation are usually deferred until the system's problem-solving
capabilities have been implemented and tested. Thus, at worst, if he is
implementing his own basic software environment, the KE must only implement
the representation language, the associated problem-solving mechanisms, and a
skeletal interface before starting to encode the formalized domain knowledge.
However, experience indicates that including specialized editors and debugging
tools in the software environment greatly enhances the efficiency of
incremental implementation efforts.

of course, the KE's approach to implementation also depends upon the
availability of the DE. Ready access to the DE supports an incremental
approach, especially where an early selection of representation language can
he made. Limited access--intensive, infrequent meetings spaced over time--
reduces the opportunity for incremental implementation and thus, given the
current state-of-the-art in knowledge engineering, the effectiveness of the
system-building effort. Except in cases where the KE has been able to adopt a
complete existing architecture for a new problem domain, successful efforts
have included a DE as a regular member of the system-building team for the
full duration of the project effort.

Incremental implementation and the concurrent pursuit of other objectives
is inevitable, even desirable, as long as the KE's knowledge is as
unsystematic, incomplete, and uncertain as it is at present. The incremental
approach provides the KE with rapid feedback that can provide early
indications of the advisability of revising system design decisions. 1he
partial working system also serves an organizational function in helping to
maintain and promote the motivation of the system building team.

r. Test in 9g Obje ctive.

1,1h( hjec:t ive ,

Formulate diagnostic test cases
Assess system performance on test cases
Collect data on user's interactions with the system
Determine system performance on other targeted capabilities
Provide information required for effective revisions

Once a meaningful subset of the formalized domain knowledge is
implemented, the KE can pursue Testing of its targeted problem-solving
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capabilities. The typical method of testing is for the KE and DE to define
critical (i.e., topical, important, frequent, or difficult) problem situations
for which the DE can specify criterial performance. Normally, testing with
these cases is repeated at points during the growth of the knowledge base and
whenever the architecture or implementation of problem-solving capabilities is
otherwise modified, as a check for new conflicts and inconsistencies that may
have been introduced.

A second aspect of Testing involves evaluation of user interface
capabilities. While these can be tuned initially by the development team, use
by others from the intended user community is required. This testing has
typically been limited and informal in many prior efforts conducted in
research environments.

The re,;ults if Testing cdn bear upon decisions and knowledge accumulated
in pursuit of each of the other objectives of the system-building effort.
They may lead the KE to determine that:

a. Particular capabilities are inappropriate or intractable and

should be eliminated, perhaps to be replaced by others.

b. The domain knowledge is incomplete, inconsistent, or inaccurate.

c. The representation language lacks the required expressive power
or transparency.

d. The hardware-software architecture lacks sufficient capacity to
-, the system or speed to execute it at an acceptable rate.

,. The proble,i)-solving niethods and strategis are inadequato--that
is, the systms behavior is not "expert."

1!ri;.ti ,f c tory performance on cri teria cases ii t ;c a .y.ytom of adry
,)f tY,,e problems. Initially, the KE responds by iterating on Knowledge
- r aqisition and Implementation, since these are most accessible to revision.
"v.nntially, however, if problems persist or if new problems continue to
(-,ere, the KE noed to consider modification of the Definition, Formalization,
or ')c';ijn ohjectives. Such modifications may have more far-reaching
r.jmifirations for the nature of the resulting system. When system developer1
.pt for new capabilities, representation languages, or architecture, the
domain knowledge base usually requires fundamental changes that entail total
redesign and reimplementation of the initial prototype (Buchanan, et al.,
IlQW ).

This process of test and revision is yet another reason for the
desirahility of incremental design, implementation, and test. By testing
po-formano as the system evolves, it may be possible to accelerate the point
wheref reimplomentation, if it is required, can occur prior to a large
i,)v,,tmont of time and resources on the initial prototype development effort.
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SECTION III

CURRENT TECHNOLOGIES FOR ASSISTING KNOWLEDGE ENGINEERING

The model of the knowledge engineering process presented in the previous
section provides a framework for consideration of alternative approaches to
automating portions of the KE's tasks. Any new proposals and designs for such
automated systems must consider previous and current attempts to provide
assistance to DEs and KEs during system development. This section selectively
reviews this body of research.

Two general approaches have been adopted to facilitate the knowledge
engineering process (Barr and Feigenbaum, 1982). The first seeks to
facilitate the interactive transfer of expertise (ITE), those phases of the
knowledge onlineering effort during which the KE elicits, formalizes, and
en.(odes the lI s relevant domain knowledge. Some systems following this
approtch aim to assist the dialogue management, bookkeeping, and translation
,ierformed by the K[ . These systems "interview" the user to collect domain
knowledge. Other systems provide high-level programming languages specially
designed to capture and represent heuristic, rule-based expert knowledge. In
other cases, attempts have been made to develop knowledge base checking
facilities for evaluating the consistency and completeness of the encoded
knowledge. Finally, some work has been directed toward supporting the
definition of system capabilities and the formulation of a software design.
Development of such aids in many cases has evolved in the context of a larger
project to implement a particular expert system; hence, such projects have
often had a pragmatic, ad hoc nature.

The second approach to facilitating development of expert systems is
"automatic theory formation" or, simply, automated learning. That research
aims to develop systens that induce new knowledge from experience--for
oxampl,', by analyzing the behavior of the DE on particular test cases. (The
Meta-Dendral Syst,,m rlindsay, et al., 1980] illustrates this second approach).
These systems would replace theI- process as a method for developing
knowledge bases and would apply to problems in which ITE is not productive,
either because there is no consensus among DEs or because the DE cannot
articilate his knowledge. Work on automated theory formation has typically
been more theoretical and to a large extent has been pursued independently
from practical applications of expert systems. Because its applied (as
opposed to theoretical) focus matches the concerns of the present project, our
review considers only those efforts directed at ITE.

The developers of the first expert systems quickly faced the problems of
managing the growth of their system and of providing facilities for end users
to control and maintain them. KEs found that once a representation language
and system architecture had been selected, the task of eliciting and encoding
new knowledge was more systematic, albeit still difficult, using generic tools
provided within Al programming systems. They responded by developing
specializations of these tools--knowledge structure editors, break and trace
packages for debugging, file managers--geared to the representations and
capabilities of their expert system. In so doing, they endeavored to provide
the means for altering the expert system using the concepts in the application
du,,,in in'tead of the programming primitives that implemented that
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application.

Following the early research on ITE conducted in specific application
domains, a second generation of efforts has attempted to extend the initial
work and develop generic tools for constructing expert systems. Such tools
have taken the form of either skeletal systems or specialized programming
languages. The skeletal systems provide a fixed problem-solving architecture
(knowledge base representations and control mechanisms) and user-support
modules for building knowledge bases usinq the system. U'se of such sheletal
systems is l',n.ted to problem domains for which their capabilities are
congruent with the customer's nerds and th'eir representations adequate t.
capture the structure and content of the domain knowledge. The specialized
progranlninq lanjuages provide data and control constructs better tailored to
'hp knowledge structures Used in expert systems than the constructs of general
'.! languages such as LISP. These languages are more general than skeletal
systems, enabling more flexible selection of architectures and capabilities.
However, they require the user to design representations and an overall
architecture and consequently to engage in greater implementation effort.

In general, skeletal systems aid the KE in achieving the objectives of
Knowledge Acquisition, Implementation, and Testing, while they eliminate
Design effort. Specialized programming languages support Implementation
(Iirectly and Design and Testing indirectly through the transparent high-level
constructs they provide to the KE.

All the efforts to aid IT- have been oriented toward either KEs or DEs
with consideratile sophistication about the expert system they are helping to
*1evelop or riinttin. UIse of 17E aids by DEs with no XE support has been
achieved only for relatively r,ature systt-ms in which the user's role is to
k;date .nd extend an already extensive knowledge base. The use of skelt,tal
,ystems for building a new knowledge base and the use of specialized
)rogranirng languages remains limited to KFs. However, the availability of
such :.ystems and languages reduces the level of programming ability a Ki necds
to imple;,ent an expert system.

The following discussion of representativD systems s divided into two
parts. The first describes system, in which supp:irt for IT was develop) ed fcjr
a particular architecture and problem domain. 'rhe second describes moro
general efforts embodied in skeletal systems, specialized programming
languages, and other general systems for impleimeting task expertise.

APPLICATION-SPE{CIFIC ASSISTANCE FOR ITE

TJIR[SIAS. TEiFASlAS (iavis, 177) was developed as a subsystem to siupport
the tlrnwth and maintenance of the MYCIN system (hortliffe, 1976) knowledge'
hase. Its facilities include tools for modification and debugging of the
produ,]tion rules MY~CIN uses to encode knowledge about the relationships
Ietween clinical data, infectious diseases, and drug therapies.

FIIUlAm.' ,ode of interaction is a mixed-initiative dialoglue usingI
mixtir of qui ,i-rnjlish language and menu interittionns with the user. The
(lialoque, model casts the user in the role of a teacher who is instructing the
system about new domain rules. The system assumes the role of a motivated
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learner, raising questions of clarification about what it is told based on the
relationship of the new rules to old ones it knows. For example, it will
point out to the user that a new rule does not contain a predicate or action
clause that occurs in other rules referencing the same concepts.

TEIRESIAS' mechanisms depend on knowledge it has about concept categories
and rule structure. This knowledge allows it to parse quasi-English rule
descriptions into its internal representation. It also permits TEIRESIAS to
raise questions about the semantics and pragmatics of proposed rule
modifications )r additions. This application-specific meta-knowledge was
initially programmned into TEIRESIAS, but it has mechanisms for modifying the
knowledge. For example, knowledge of concepts frequently referenced together
is induced dynamically as the knowledge base changes.

To support debugging, TEIRESiAS interfaces to MYCIN's explanation
facilities and case library. When modifying or adding rules, the user can ask
for a dynamic trace of rule tests to determine why specific conclusions were
or weren't reached. This aids the user in revising existing rules when new
rules are added, so that undesirable interactions among rules can be corrected
as the knowledge base grows.

TEIRESIAS' approach is based on two fundamental assumptions. The first
assumption is that the host system's (i.e., MYCIN's) control structure and
knowledge representations are understandable abstractions of the domain for
its users. TEIRESIAS' users were the same KEs and DEs who had built MYCIJ
originally. They were therefore familiar with MYCIN's abstractions of the
problem domain and problem-solving process and could think in terms of them,
even if they were not completely intuitive. TEIRESIAS would not be accessible
to use by others without considerable training about how domain knowledge is
represented and u';ed by MYCIN.

TEIRESIAS' use of metd-knowledge about the host system's implementation
refl,'zts a second assumption: that MYCIN's c)ntrol structure and knowledge
representations were a sound approach and th('refore stable. The architecture
and interface of the ITE functions are directly dependent on those of the host
system and would require revision if the latter were modified. MYCIN was in
fact a relatively mature system, with a significant existing knowledge base,
at the time TEIRESIAS was designed and implemented. The alue of implementing
ITE support for a mature system depends on whether the knowledge in the
application domain is expected to change over time, on how complex the
"manual" process of modifying the knowledge base is, and on the skills of the
individuals who are available to implement modifications.

KA<. The "nowledqle Acquisition System (KAS) (Reboh, I1,) was designed as an
Uif ii,i for the PTOSF'KTON system (Duda, et al., 1978). ;ike TEIRESIAS, KAS

wa.. aes I qndIl rmI impl emented only after ffs Fhost sys temn' s drchitecture was
.tnhli and a suhst.antiti knowledge base existed. Similarly, its architecture
in-l in tirfac, ire (lependent on the represefitations ar.i cmw trol structures of

P'!1Ti, W.[0R. However, it does not us, application dependent meta-knowledge
about the PROSPECTOR problem domain (i.e., interpretation of geological data).
Thus, KAS is transportable with the bare PROSPECTOR architecture (i.e., as a
skeletal system) to other applications.
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KAS takes advantage of PROSPECTOR's network knowledge representation for
-luiding the acquisition of related rules. In particular, it supports the
joint efforts of a KE and DE to define a new inference model, which describes
the rules relating geological data to a specifTc-_ty-peof -ore deposit.
PRCSPECTOR uses networks to partition and structure its rules into inference
models, and KAS uses the structural syntax of the network representation to
stimulate and monitor the elicitation of models. in addition to supporting
knowledge acquisition in this manner, KAS provides the KE with capabilities
t r debugging and evaluating the performance of models by tracing their
.oecution on ,tored cases and new ones provided 'y the DE.

KAS's basic approach to model building is initial top-down definition of
the anstractions in an inference model followe- 'ry iterative top-down
elaboration of the arcs and nodes of the network created by the original
definition. These elaborations include the logical semantics of the arcs
linking nodes, the numeric values .f parameters to be tested against data and
to be used to assign confidence to inferences, and specifications for the
Fornat of questions and answers PROSPECTOR should use when asking its user
about parameters.

The main subsystem of KAS used in model ,uiioing is the REsident Network
Editor (RENE), which incorporates knowledge about PROSPECTOR's
representational and computational formalisms. RENE provides an interactive
edito- for networks, automatic bookkeeping for the model implementation
process, dialogue management during elicitation, and an interface for
controlled execution of inference networks.

The structure editor, like those implemente1 for Al programming
languages, provides the user with primitives for manipulating arid altering
:omplex data structures--in this case, networks. Commands for changing the
,ditor's attention and for modifying knowledge reference arcs and nodes -athec
"han the !.iore primitive data types (e.g., strinls of characters, lists, ato%.-, '

;se,,- in PPbSPFCTOR to implement these abstractinns. The goal is both to
,rvet vntactic errors that could occur if the user manipulated low-le.fC

representations directly and to allow the user to manipulate construct'I

corresponding to those he uses to articulate his ,ixpertise during problem
*al ving.

The bookkeeper is an "intelligent agent" tnat 'looks over the shoUllle
tho K I as he interacts with R[NE's other facilities. It prevents syntatic
,,tror--for example, by noticing that the KE hasn't. co)nnected parts of an
inference notwork. It fills in defaults for desc-iptive and quantitative
.Attributes of ,rcs aid nodes that the KE does riot supply. It alerts the KF t*,
'xmific3tions of inputs for prior inputs. The bookkeeper uses a hierarchy of
knowledge about representations, about the host system, and, to the extent

that it has been supplied, about the domain. This knowledge is used by a
lata-centered programming model that allows a set :f actions to be associated
with each type of element of a representation. These actions (e.g.,
-enerating a default value) are executed wheoncvr an element is added or
modified. In this way, RENE generates side-effects for actions initiated by
th2 user that reFlect the system's built-in knowledge of possible entailme -.
of tho;,' actions.

KAS prim.arily employs a question-and-answer dialogue protocol, generatin"
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its output from pro-stored templaites. It usos menus and a quasi-Fnglish
cominan. 1 langualn, for" uer inputs. To inhibit us erors it uses the grammar
of the coinand language to protnpt the user rather than attempting to parse
full statements. The grammar int erfaces to PCSPLCTOR 's taxonomic networks
(networks that represent the concepts used in the inference networks) to
extend the lexical richness of the command language as the knowledge base
grows.

During model development, RENF's capabilities for controlled execution of
the evolving model within PROSPECTOR allow inimediate incremental testinj and
refinement. Besides helping to prevent the propagaitior) of dependent errors,
the independent debugging of pirts of a model provides motivating feedback to
the KF and DE.

'nce the user has d,-eloped an initial model, KAS can be used to install
and tune it within the ei stin PPOSPECTOR knowledje base. Tuning includes
the addition of ,-n ,h-specifi' ,laborations that modifj de-ults supplied by
1TNFI, for.e sp( :F " question sequences, and control the fetus of attention
dWr 1j d : , io thar .<c- ,ees the inod,,l . At tiii st3'je, KAS als, offers
ra ilirio I," "UtIh tc rlolve" t artn .) o f the coinpltte nn l ci- 1ss supplied by

h'e expert The,. ; te ,ovi 1, aurorntic variation of answers stored
ta],w a snsi tvit? ,nalysis. Tkey ilse a;llCw the mixing of

)tored ,nswer- with tnost, acquired i.nteractively so that the. K" and DE can
riore easily ex2lere a particular issue in variety of contexts.

The gr-ve oper.s of ....y have drawn sever,,! general concIl 's nns from their
effort. i rst, regarding the knowledge that must be acqui r(., support for I T E
;hould extend beyond the acquisition of domain problem-solving knowledge.

Effective interfaces for knowlelge-based systemns like PROSPECTOR require
domain-specific meta-knowlcdge to provide dialogue control if consultations
are to follow a course that is acceptable to its users. KAS is a major aid
for adding and testing such rpti-knowledge for new inference models. Second,
use of an exist n knowledge bas3p has important ,,onefits fo- suppcrting the
acquisition of new knowledge. In particular, ex perieice with KAS has shown
that expandin P ,OSPECTOr 's network of taxonomies without regard to its actu3,
use by existinq inference ,nodels is an aiI to acquiring new models. This
benef ft deoIve,, 'rom the use of t o taxonomi e to- dynamically expand the
vocabulary of th omrnand languge . The kncw, c i1,je a system already contains
is al so important for supportin.. Lhe onderstonli nq of i ncomplete referenc;es bY
the i.er. Withomit this capability, unless the systPm can somehow provide
,,nouilh o t,,t for he user to keep track of the ,c(.tonts of the knowledge
base, it is i tf1,:ult for the user to interact with a know edge acquisition
aid.

The f nal conn'; iU;on concerns the generality of knowledge acquisition
aids. r ffec tive i (1; roquire knowledge about the reoresentations used in
their host systes. The dietails of such represen.iti ons de)end on the problem
domain and purpose enccnpassed by the host system. Ahus, the generality of
specific aids cor never be greater tnan the generality of their host system.
PROSPECT OR/KAS attempts to maximize their generality through a "layered"
architecture that localizes the modifications ne(,,ied to adapt the system to
different domains ard purposes. Several attempts to) adapt the architecture to
different classification and interpretation probl ems have confirmed that
miinimal changes are rpquired to, upport applic,ifions of PR(OSPFCTOR/KAS to
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other members of the class of data interpretation problems.

THE ONCOCIN KNOWLEDGE BASE VERIFIER. ONCOCIN is an expert system that
provides its users with recommendations about cancer treatment therapies for
individual cases. Part of the ONCOCIN system (Suwa, Scott, and Shortliffe,
1982) is an ITE aid for the extension and revision of the ONCOCIN knowledge
base. This aid checks the completeness and consistency of the knowledge base
whenever it is modified. Unlike the approach taken in TEIRESIAS and KAS, the
ONCOCIN knowledge base verifier allows testing for knowledge consistency and
completeness prior to the existence of or access to a functioning host system.

ONCOCIN rules determine a therapy protocol represented as a list of
"action parameter values". Each rule includes a co;,text and a set of
conditions for determining its applicability to a case. The verifier operates
by syntactically analyzing rules that recommend the same action in the same
context and generating a table whose row entries are all the possible
combinations of condition parameters found in the rules. The table indicates:

a. Missing rules: combinations of condition parameters not
.ssociat -wi-th a- therapy protocol.

b. Conflict: combinations of condition parameters that would
succeed irfth- same situation and are associated with different
protocols.

c. Redundancy and Subsumption: combinations of condition parameters
that wou' -?s-u-c-c- T -t'i sameiTtuation and are associated with
identical protocols.

Only conflicts are true errors, but the other !iata serve as additional foci

for a review and revision of the knowledge base by the KE and DE. The table

,!isplay con-titutes the entire user interface of the knowledge base verifir.
his liimite.1 interface restricts the verifier's utility to a KE who has a loeo

understanding of its operation.

The verifier was initially developed and used t,) support the construction
of the Driginali ONCOCIN knowledge base. It is specific to ONCOCIN's rule
representation, but independent of the domain seiaantics and system
architecture. The generality of the approach does seem limited by domain
characteristics, however. To avoid a combinatorial explosion in the size of
the table, the KE must partition rules by "context" into sets sharing a small
number of condition parameters. For the discovery of missing rules to be a
useful activity, most combinations of condition parameters must be meaningful
in the problem domain.

r'-CS. SECS (Wipke, et al., 1Q77) is an expert system that helps its users
solve organic chemistry synthesis prohlems. Its knowledge base is a budy of
rule-, called transforms, each of which relates a target substructure to its
ptecursors in a -eactkfn. SECUS includes an ITF. support facility that allows
its ')F users to maintain and extend its knowled(eo tase.

Modifications and additions to the SECS knowledge base are made using the
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ALCHEM language, a quasi-English command language with a rigid syntax. The
ALCHEM commands enable the description and manipulation of transforms in terms
of schema-like abstractions. Each "slot" of the schema has its own
specialized syntax which is recognized by ALCHEM. Although the ALCHEM syntdA
is rigid, the ITE interface is flexible in that the user has full control over
how to proceed in defining a new transform schema.

SECS and ALCHEM represent an extreme approach for using domain and
system-dependent knowledge in implementing support for ITE. At the cost of
generality and of considerable commitment by its users to master new skills,
the result has been a mature system which is now completely maintained by its
user community.

KOL. The Knowledgeable Opponent Librarian (KOL) (Alperovitch, 1982) is an ITE
did developed for use with a knowledge-based tactical gaming system. It
supports the elicitation of tactical plans that can be executed by an
automated opponent in the host system.

KOL's elicitation method is based on top-down refinement. The user,
either a KE or trained DE, is prompted to describe a tactical plan at
progressively lower levels of abstraction. Each refinement expands an action
into a number of more specific actions. Ultimately, the refinement must reach
a level where the descriptions reference only a predefined set of domain-
specific primitive elements.

KOL allows the user to exercise initiative and return to previously
expanded nodes in the plan tree in order to enter modifications. It has
bookkeeping facilities for informing the user when such modifications have
ramifications for other nodes and for monitoring whether all branches of the
plan have been expanded to the level of domain primitives.

The KOL user interface uses stored text templates to generate prompts.
It has i structure editor for input that limits syntactic errurs. It makes
tise of CRT display features to present context information during editing and
to display plans. These features are also used during elicitation to provide
limited context around the plan node being expanded. The interface does not
providie capabilities for using existing plans to build new ones. In addition.
because it can only interpret the design descriptions at the primitive level
(if the plan tree (i.e., the leaves of the tree), it can provide no assistance
in evaluating the overall design.

KOL is essentially an aid for program design and automatic programming in
a partic lar domain--that of submarine tactics. It forces the user to design
a plan (program) specification in a structured, top-down fashion. It then
uses an interpreter to translate the lowest level of the design, specified in
a predefined abstract languae., into Pascal code that can be executed by the
host system.

The KOL approach to supporting ITE, like most of the others described
thus far, is iable only after its host system is relatively mature. It
depends on the existence of a stable domain-dependent set of primitive
concepts and a language for referencing them. The KOL implementation is
relatively modular, allowing the elicitation and bookkeeping facilities to be
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used with different domain-specific primit;ve plan languages.

KOL's generality is limited to probli-i domains in which plans are
conceived as hierarchical and in which tho actions at each level of the
hierarchy are sequential and independent. This ipproach to planning may be
overly restrictive in certain situations and not well matched to humans'
planning style. For example, for soie )rohlems the plans may not he most
naturdlly represeoted as hie,'archical stru,-tures. In cases in which the plans
are hierarchical, actions in the plan may include concurrent and asynchronous
actions. I' .0dition, planners do not always !cv.-lop their plans in strictly
top-down fas,.ion. Rather, they may generate plan elements opportunistically
as decisions and choices at d fterent levels of ,straction occur to them.
Therefore, an aid for ITE should provide flexihility and robustness in the
representation structure of the knowledge to be elicited and in the degree of
u ser control over dhat portion of the structure to elaborate next. The need
for such flexibility inc-cases as the intended generality and intended scope
of applicability of the aid for ITF increases.

ITE SUPPORT IN APPLICATION-INDEPENDENT KNOWLEdI-ENGINEERING TOOLS

EZMYCIN. EMYCIN (Essential MYCIN) (van elle, 1979, is a skeletal system
derived from the architecture of the MYCIN system. It has been applied to
classification and interpretation problems in several domains.

EMYCIN contains all the support facilities for ITE that TEIRESIAS
provided for MYCIN, except those that were directly dependent on domain
Tnowledge programnmed into TEIRESIAS or available to it from MYCIN. Thus,
FMYCIN does not support the same quasi-English rule specification nor the
checks for rule consistency that were features of TEIRESIAS's interaction with
the user. Insteao, EMYCIN has a high-level str,jcturo. editor for modifyi:iq its.
knowledge base. Within the editor, rule specifications are entered in the
IsP programming language. The editor provides some synta(.tic and lexi,.al
rr.)r rheckin and correction as well as autcnitic bookkeeping for the

knowledge base. FMYCIN thus requires greater computer-related skills froc" i,
users than did TEIRESIAS.

The facilities carried over from TEIRESIA, include:

a. Interactive tracing and debugging of the reasoning leading to
concl usi onrs.

b. P-, interface to the performance system's explanation facility to
obtain summary explanations of reasoning.

c. Automatic testing and comparison of stored case data and results
against those produced by a modified knowledge base.

In general, ITE support in EMYCiN is more passiv than that in TEkISAIS,
placing most of the responsibility for initiative in the user's hands.

R06E. ROGFT (Bennett, 1983) is an ongoing, experimental effort to prov,de
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extensive support for ITE in the EMYCIN system. ROGET is unusual in that it
is intended to consult with the user about how to design an expert system for
his domain. ROGET applies meta-knowledge about how automated consultants for
other problem domains have been implemented within the EMYCIN architecture.
This experience is encoded both as specific facts about the other
implementations and as generalized concepts and rules inferred from the
specific facts. ROGET thus embodies a characterization of the class of
problems to which EMYCIN is applicable.

ROGET applies a set of dialogue management rules to control a question
and answer dialogue with its user. The dialogue guides the user through
several phases of description of the desired system. The initial questions
ask about the purpose of the system, the general features of the knowledge it
must embody, and the data it will operate on. Examples from EMYCIN and other
expert systems are used to illustrate the classifications the user can
specify. Using these data, ROGET generates a probabilistic conclusion about
whether EMYCIN is suited to the task and, if so, what time and resource
expenditures the user should expect. It is able to use a trace of its own
rules to explain its conclusions to the user.

In the next phase of the dialogue, ROGET guides the user in formulating
the abstract conceptual structure of the task. Again, it uses its knowledge
of other systems to1T-Tut-rafe 6ssible answers. A conceptual structure,
analogous to the inference models of PROSPECTOR/KAS, describes a generic model
of problem solving for a class of tasks (e.g., clinical classification).
ROGET uses the abstract conceptual structure it elicits to guide a dialogue
elaborating specific models for the user's domain. This corresponds to the
elicitation of taxonomic and inference networks in PROSPECTOR/KAS.

The features of ROGET are only partially implemented and there are no
real data on the effectiveness of the system. Even so, ROGET is a significant
new step toward support of ITE. It is the first system to provide assistance
in initial problem formulation (part of the Definition objective) that is
fully integrated with elaboration and refinement of the formulation. It does
this using its knowledge about the host system and about the characteristics
of specific types of problem domains implemented in the host system. ROGET is
oriented toward use by a KE; however, once the initial characterization and
conceptual structure have been entered by the KE (based on interactions with a
DE), it should be possible for a trained DE to use the system to further
elaborate the structure with only intermittent assistance from the KE.

rhe approach taken in ROGET suggests that a system providing assistance
in early knowledge acquisition requires historical and pragmatic knowledge
about its own structure and about the class of problems that it can address.

FXPLRT. EXPERT (Weiss and Kullkowski, 1979), like EMYCIN and PROSPECTOR/KAS,
is a skeletal system for building consultation systems that help solve
classification problems.

EXPERT's support for ITE is limited to testing and debugging new
knowledge. Adding new knowledge is a programming-like activity that occurs
with no direct interface to the performance system. Instead the user must
employ a standard text editor to describe the knowledge in a rigid, special
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purpose language. The text file is then submitted to a compiler which detects
syntax errors and generates an executable internal representation of the
knowledge base. This base then can be utilized by the EXPERT performance
system. Knowledge acquisition therefore requires users trained both on the
system's problem-solving abstractions and use of general-purpose computer
sy stem s.

Testing and debugging facilities permit tracing the operation of rules on
a casc. and comparing the results produced by different versions of a knowledge
base over a set of cases. The emphasis is on design of inference models by
debugging and refinement, with initiative strongly vested with the user.
However, the need to use an external editor and operating system facilities to
manage knowledge base maintenance assigns greater incidental bookkeeping
responsibilities to the user than is common in similar skeletal systems.

AGE. AGE ("Attempt to GEneralize") (Nii and Aiello, 1979) is a system for
designing and building expert systems. It bridges the gap between skeletal
systems like EMYCIN and specialized AI programming languages. AGE aids its
user in selecting and configuring control formalisms for the expert system the
user intends to build. Ultimately, the user must encode the domain knowledge
into the selected formalisms using the LISP programming language. However,
AGE provides a software library comprising a rule interpreter, rule tracer,
and explanation modules as well as the representation formalisms. The user
has access to these through an intelligent front-end that performs automatic
bookkeeping and provides active guidance during the design and implementation
of the user's system.

AGE conducts a dialogue generated from templates to elicit a design from
the user. The user predominantly communicates through menu choices, with text
input limited to labels the user provides for components of the design.
Dialogue management is based on prestored control knowledge about sequences of
architectural decisions and implementation activities that realize the
alternative architectures. At decision points, AGE offers the user choices
and can provide advice based on its control knowledge. Using a command
language, the user can escape from guided design elicitation to work on the
design and implementation in any order he wishes. Subsequently, he can return
to guided design, since AGE maintains a record of progress within both the
guided and unguided modes.

DespiL' the user-friendly features of its front-end, AGE is strictly a
tool for tho knowledgeable KE. In addition to LISP programming ability, the
user must learn to understand and use the technical terminology AGE uses to
reference the software models it includes. ITE support is limited to design
and implementation, with no facilities for assisting the KE in interacting
with the DE to dcquire domain knowledge.

i 1) ). The GOD0)LSS system (Pearl, Leal, and Saleh, 1982) is an integrated
knowledge acquisition and decision a;ding system. The performance component
of GODDESS is not an expert system, but we include the system in our
discussion because it draws on Al research and emphasizes support for ITE.

GODDESS guides a naive computer user in the elaboration of considerations
underlying an impending decision. The approach depends completely on
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syntactic analysis of a formalized representation of the user's input
accompdnied by quantitative evaluations of preference and confidence judgments
associated with elements in the representation. GODDESS can recommend a
decision based on the user's input, but more importantly provides an
interactive capability for the user to perform a sensitivity analysis--to
determine the criticality of particular factors and values in determining the
recommended decision.

GODDESS uses a simple generic representation of causal models for the
user's input. This representation is an AND/OR graph of goals and actions
derived from that used in the STRIPS (Fikes and Nilsson, 1971) system.
Dialogue management is based on the structure of this representation. It
starts with the user's ultimate goal and proceeds backward iteratively to
elicit subgoals, alternative actions to achieve those subgoals, and
preconditions for performing those actions. As each action is elaborated the
user estimates its cost and its likelihood for causing its immediate goal to
be achieved. The order in which subgoals (preconditions) are pursued in the
dialogue is determined by GODDESS using user-supplied judgments of
criticality.

The user interface in GODDESS is rigid and permits no user initiative.
Since the system has no knowledge of any task domain and does not develop a
hierarchy of primitive concepts., it must treat all user descriptions of goals
and actions as unparsed character strings. This limits its ability to check
the consistency of that information. The developers consciously sacrificed
this capability for generality of applicability and availability to untrained
users with a wide range of decision problem types.

ROSIE. ROSIE (Rule-Oriented System for Implementing Expertise) (Fain, et al.,
1981) is a high-level programming language specially designed to support-t-e
implementation of expert systems. It has a relatively flexible English-like
syntax and a variety of language constructs that support ,dle-based
progranining. However, it does not include an integrated design for knowledge
representation and problem-solving control structures, such as the fixed
desi'n of EMYCIN or the alternative designs of AGE. Instead, the ROSIE user
omst construct thise manually at his own initiative using the language's
constructs. These constructs are intended to support transparent
implementation of a variety of problem-solving architectures.

The ROSIE user interface includes the features Al languages such as LISP
typically offer: interactive editing, interactive debugging using traces and
break points, and automatic file management. However, these are oriented
toward the level of abstraction of language constructs, not that of the user's
design. Thus, ROSIE provides little direct support for ITE except insofar as
it allows the user to program using the same concepts and English-like
expression of rules as he uses to describe task expertise. ROSIE's appeal to
the user is thus not its support for ITE, but in the flexibility it affords
for implementing system capabilities not available in existing skeletal
systems and in the ease it affords for expressing knowledge and rules.
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CONCLUSIONS

The majority of efforts that have implemented knowledge-based systems for
specific problem applications have included some attention to the support of
ITE. In most cases, the support has evolved from that typically available in
Al programing systems for interactive testing and debugging. The
specializations of these facilities for knowledge-based systems include
manipulation of more abstract representations of knowledge and control and of
configurations of test data that are meaningful for the application. Support
for the acq-j,.ition of new knowledge has been added to assist incremental
extension and refinement of expert knowledge bases. TEIRESIAS and KAS have
explicitly addressed knowledge acquisition support by taking an active role in
the knowledge elicitation process. To do so, they use knowledge about the
architecture of their host system, about specific features of the domain
knowledge, and about characteristics of prior knowledge acquisition
interactions.

keletal systems and other generic tools for building knowledge-based
systems have included generalizations of the TTF support found in the
,pplication-specific syste;,is. The ITL, support in generic systems applies
across most of the knowledge base development process. However, because it is
base:1 on the syntactic structure of skeletal system's representation
formaliso, active elicitation is more mechanical and less responsive.

To the present time, support for ITE has been oriented toward KEs and to
a lesser extent DEs knowledgeble about formalisms of the host system. Thus,
DE jse hi been limited to systems that are already stable and so are unlikely
[ require funl.imental changes of cdpabfities, design, and implementation to
,icownmodato extensions ot their knowledge base. GODDESS, the one system
described here thit is oriented toward use by naive DEs, is not a true
kriowlh:dge-b.ased system in that it has no understanding of the knowledge the
user encodes beyond its fornal relational structure. For true knowledge-base(;
systems, direct use by DEs for ITE appears possible only with special
tr'dinin!. The amount of training required seems to be directly proport ')-31
tO the complexity and flexibility of the system's representation formalis;
and inversely proportional to the system's ability to apply domain-dependent
knowledge in managing ITE interactions.
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SECTION IV

INSTRUCTIONAL KNOWLEDGE ACQUISITION SYSTEM CONCEPT

In this section we present our concept of an automated knowledge
acquisition system for elicitation of information from a DE for use in an
instructional system. In deriving a concept for automating knowledge
acquisition and reducing dependence on KEs for training system development, we
considered the set of functions performed by the KE (as described in Section
11). Our review of prior work on aids for ITE (described in Section III)
provided data on the current state of the art in systems for ITE, the
resources required to achieve various capabilities, and the feasibility of
automating or assisting different aspects of the knowledge engineering
process. Based on this analysis, we considered a variety of possible concepts
for tools to assist the DE in pre-filtering ideas for automated training
system applications, tools to assist the knowledge engineer in the system
development effort, and tools to assist the elicitation of knowledge from the
DE. The set of specific concepts we considered included:

a. An advisor to help the DE determine if a knowledge-based
instructional system is feasible for his application

b. A tool reconmmender to advise the DE what training approach is
tractable and what instructional technologies can be brought to bear on
his application.

c. A knowledge engineering language tailored for the construction
of surrogate instructor training systems.

d. A data base completeness checker to find redundancies,
inconsistencies, and knowledge gaps in a wide range of application areas.

e. A test case generator for producing and managing tests of
developed systems.

f. A system to elicit from the BE the basic declarative concepts in
the domain and the relationships among them.

g. A system to elicit from the BE an expert task performance model
for any domain (i.e., the goals and procedures used to perform the task
correctly).

h. A systemi to elicit an expert task performance model for tasks in
a particular domain class (e.g., tactics, radar operations) that would
use class-specific knowledge to intelligently structure interactions with
the user.

i. A system to elicit the deviations in an expert task performance
model that would define the performance model (i.e., the model of the
type,, of incorrect behaviors the trainee might choose in particular
situations) used for skill diagnosis during training.
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j. A system to elicit the rules used to diagnose trainee behavior
during instruction (e.g., IF situation AND behavior THEN infer
diagnosis).

k. A system to elicit training problems or situation descriptions
that can be used by a generator to produce training problems.

To evaluate the promise of these concepts in meeting the objectives
stated by NAVTRAFQUIPCEN, we developed a set of criteria for system utility
against which these coticepts could be weighed. The following paragraphs
describe these criteria, and the subsequent discussion presents our concept of
an automated instructional knowledge acquisition system (IKAS) that emerged
from these considerations.

CRITERIA FOR EVALUATING IKAS CONCEPTS

EVIENCE SUPPORTING FEASIIILITY. Perhaps the most fundamental criterion for
evaluating the suitability of a concept is whether or not its implementation
appeirs to he feasible, given current technology. Judgments of the
feasibility i)f (o concept depend on several types of evidence. Precedents from
Prior research indicate whether the knowledge and methods to perform the
function inder co'nsideration can be sufficiently well described to support an
implernent tien. Discussions with dommain experts can indicate the extent of
their knowlecge, their ability to articulate it, and their ability to engage
in particu'ir types of human-machine dialogues jbout that knowledge. In
general, the feasibilit,' of realizing a particular IKAS architecture varies
directly as a function of the scope and complex'ty of the concept.

EASE OF IMPLEMENCATION. A set of IKAS concepts judged feasible may vary on
the anticipated time and effort required to implement them. Implementation
time affects the cost of developing a system and therefore influences the
evaluation of cost against expected benefit. A significant portion of
development time for a specific IKAS depends on che time required to buil vrlJ
stabilize the host instructional system that the IKAS will serve. Another
deterinant is the scope and novelty of the targeted IKAS capabilities: the
oireater the Inticipated difficulty in implementinq a capability, the greater
the expctel 1ie1tlovintation tirme. Novelty of i concoept can be assessed by
contr ii prior ,(forts it (fevelopf.g knowledq( e ongqieerinq aids. These
lrior ef )rt, , also provide a source of data for ,anticipating expected
development times r'd resource requirements.

REDIJION ()- Or FIME-ON-TASK. One measure of the value of an IKAS is the
:,'tent to which it reduces the time DEs must invest to assist in the
ievelopment )f an instructional system. If an estimate can be made of the
increa~sed efticiency of the IKAS over manual knowledge acquisition, savings of
PjE time can be estimated by considering the relative proportion of overall
system development activities involving the DE for which the IKAS will be
used.

RZFD'JCTI()h OF KF TIME-ON-TASK. The NAVTRAEQUIP'LLN statement of work empha;ized
the Inherent value of reduction of the KE's time and involvement in the system
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development process. The cost and scarcity of skilled expert systems builders
perhaps makes this criterion an important consideration in attempting to
reduce costs. While the development of automated capabilities for acquiring
instructional knowledge should reduce the requisite involvement of the KE on
that portion of the system development tasks, the presence of the system will
most likely entail other, new activities for the KE. For example, the KE
might need to use the IKAS himself to review the results of DE-machine
interactions and obtain knowledge he needs to perform other tasks. An
understanding of the entire system-building process (see Section II) is
critical in applying this criterion.

EVIDENCE FOR USER REQUIREMENT. This criterion reflects the extent to which an
IKAS is perceived by potential users (both DEs and KEs) as necessary to
supplement or replace manual methods. Even if the IKAS does not reduce time-
on-task for either DE or KE, it may be required to alleviate the difficulties
of scheduling face-to-face interactions between DE and KE. DE participation
may not be possible unless it can be done on a spontaneous, opportunistic
basis proximate to the DE work place. Inputs from DEs and system builders are
instrumental for determining whether there are user requirements for an IKAS
in order to build a knowledge-based instructional system for some domain
class. Thus, when scheduling and geographic constraints restrict the
interactions between KE and DE, the IKAS could serve as an institutional
memory to record for subsequent review the interactions between the system and
the DE or KE.

INCREASED FUNCTIONALITY. Aside from possible time savings and increased
convenience, an IKAS may improve the quality of the knowledge obtained for the
instructional system. It may accomplish this through the use of more
systeinatic and thorough interviews than would be conducted manually. Relative
functionality can be estimated by comparing the capabilities of the IKAS to
those achieved manually, as evidenced by prior efforts. There is an obvious
tradeoff with concept feasibility and time-for-implementation for approaches
that attempt to significantly increase functionality.

GFNFRALITY AND SCOPE OF APPLICATION. Generality and scope refer to the
breadth of applicability of the IKAS and to how much of the instruction
typical of the domain can be accomplished via the instructional system. They
ilso refer to how much of the knowledge used in the instructional system is
obtained by the IKAS and to the extent of IKAS's role in the life-cycle of the
instructional system. Ideally, when the domain knowledge is constantly
changing, the IKAS should play a role in eliciting new knowledge from the DE
to update to an existing system.

DE BACKGROUND AND SKILL REQUIREMENTS. A significant determinant in the

success and utility of the IKAS will be the extent and type of knowledge
(apart from domain-specific knowledge) the DE needs in order to use the 1KAS.
ror example, it seems likely that an IKAS design will need to assume its user
has scome computer background or skills. Alternative concepts may vary in the
leqree to which other special knowledge--about learning and instruction and
,ibjut knowlodge-hased systems technology--is needed by their users. The
number of DEs for any problem domain who are potential users of the IKAS
decreases as requirements for special knowledge increase. This factor can
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characteristics of and procedures required by different specific surface- or
air-search radars.

Restriction of the scope of the IKAS in this fashion will permit the use
of semantic and pragmatic knowledge of the problem class for effective
management of knowledge acquisition interactions. Our concept therefore
includes the use of class-generic knowledge by the IAS to guide interactions
with the user. The abilty to use knowledge about a class of tasks to guide
the acquisition of instructional knowledge about specific tasks in that class
imposes two ii;portant requirements on the nature of the IKAS. First, the
desion of the instructional system must he stahl, so the knowledge of
structure and cdpdbilities used by IKAS does not become obsolete and
inappropriate. Second, the development of the IKIS for a (lass of tasks
leipends on at least a partial implementation of one appl ication within that
,:lass. This implementation would assist the process of identification of
class-generic knowledge and structure using general concepts, induced from the
specific task under study. The resulting IKAS would be caable of supporting
the development of the identical instructional system for other members of the
domain class.

The following section distr!sses three promising alternative realizations
of the IKAS concept. The alternatives were selected by considering the
criteria described above and assessing the cost and expected benefits of
development of the concepts. We perceive tradeoffs among the criteria as
applied to the alternatives that prevent us from identifying any one of them
as best from a technical perspective. However, each of them appears to
satisfy NAVTRAEQUIPCEN's stated objectives and entail a feasible set of syste
capabilities that extend the technology currently available to the developers
of computer-based training systems.

A[ lF!'NArVlF 1: AN AI) FOR THE SPECIFICATION OF PERFOPMANCE MODELS. [E pIrt
,ystp!is--knowledge-based systems designed to act is consul tants for domain

ip iaiists- -emhody a competence model, the knowledge that ou(jht to be u,;ed ii
ro n- sovinJ .I tuat -n-s.--l(-n-owT-e-d-e-based instructional syst-ms (KBIS), if

they are to implement performance diagnosis for trainee evaluation or, election of instructionaT-n-tern-Tons, lso need performance models. These

models contain representations of the knowledge learners may a-ctua--ly apply in
situations. Performance models describe errorful or suboptimal behavior
relative to the competence model. While expert systems need to generate
actual competent problem-solving behavior, some KBISs have been able to
perform performance diagnosis with descriptive, less complete competence and
performance nodels, different from those employed in expert systems. As a
consequence, constructing a KBIS can have substantially different requirements
for knowledge acquisition than an expert consultation system (Brown, 1977;
lancey, 1981).

One altprnative IKAS concept focuses on the acquisition of the knowledge
necessary to construct performance models in a diagnosis module of a KRIS.
This knowlodge includes:

i. fle';crripti,,;s of non-expert behavior (errors, parametric
variations) in the domain
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defense tactics), it is not clear at what level of abstraction (ships
within classes, classes within platform types, types within mission
areas) generality can be achieved for this IKAS alternative.

c. It is not evident whether this system would reduce the DE's
time-on-task du'inq the development of a KPIS. The Il would be involved

in both the manuuoly-based develapmont of the competence model and the
IKAS-based development of tie performance model. It is possible that the
duration of both could be reduced over a fully manual approach because
the IKAS wil I'e able to use e.isting class-generic kr-)wlrdge in both
types of models. The KE's time-on-task would be reduced to the degree
the IKAS replaces him in eliciting performance models from the DE. It is
likely that these savings would be substantial because the knowledge
embodied by performance models is typically many times greater than that
of the corresponding competence model. However, total time savings would
undoubtedly be offset to a degree by the KE's need to familiarize himself
with the performance models. Although a key assumption of the general
IKAS concept is that the KE will not undertake modifications of the KBIS
irchitectjure, there will certainly be some need for the KE and DE to
refine and revise the knowledge acquired using the !KAS. To do so, the
KE will need to spend time acquainting himself witn that knowledge.

i. This IKAS concept will require some training for the DF so that
he can use the system interface and understand the knowledge
representation used in the KBIS. This background will be necessary to
allow the DE to engage in meaningful dialogues and to ;rovide useful
information about potential variations from competent behavior and
situational parameters that affect performance. An important advantage
of this alternative is that such trainin can be 3 nc-eItafl- embed5- in

SPt--Te rct rcTnTtwe n6 t--l-e Tan-F-on d eep]e-n o the-. ...
o Ceten, moe sTf F os e nteractToswT- ntroduce T-n representation

)ncepts to tr OE. I urther, if the KE works with the PE while using the
IKA'S interface to develop and test the competence model, then the DF
-hould become sufficiently familiar with the IKAS tilt his later use of
the system can he supported largely by rcference manuals, with little or
no need for formal tutorials. Thus, while this IKAS alternative requires
backgr-und and skills for its use, we anticipate very little -,dicated
traininq will be needed for users to acquire thr.

A. TLK'FTi!Vl 2: 'IOPIFICATION OF AN OPPONENT SIMULATION fOR TACTICAL
-RAi 114. The second alternative for IKAS concept development addresses a
training capabiliy that does not depend directly on performance diagnosis an,
the performance modeis it requires. The capability involves providing the
.pahilit, for the OF i)r instructor to define and sequence the set of problem
ituatinn- t,) ho prosented to the learner. Providinq this capability to alter

*ne traininj syst(m would allow the instructor to develop curricula, monitor
Inc participat( ir, training exercises, and contr:)l the course of instruction.
The specific elxample of this capability we will consider here entails the
lodi icat ion of the behavior of an automated opponent in a tactical traifling
simllatior. (However, there are analogous capabilities in other domains--for
,,;],e , the minner in which a piece of equipment will behave in a maintenance

trdining simulator.)
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The system concept assumes that the opponent simulation is based on a
rule-based representation of the actions and proceduros the opponent should
execute in tactical situations. Further, it assumes that prior to use of the
IKAS, the definitions of rules, high-level procedures, and primitive actions
are sufficiently complete that the opponent simulation is operational. At
this point during system development, its behavior will probably represent an
initial formulation of a skilled opponent. Use of the IKAS would allow the DE
to specify variat-ins of rules and procedures governing the opponent's
behavior. Such modifications would produce alternative, perhaps suboptimal,
opponent behiviors--performance models for the opponent, as opposed to
performance models of the learner as in Alternative 1. The variations might
include both structural and paramuetric changes. Such modifications might be
intended to achieve a number of goals--variation in skill levels, use or
avoidance of particular tactics or systems, or the creation of particular
tactical situ,;tions for the trainer to respond to. Such variants could be
used for a number of pedag ogictl purposes, depending on the training goals of
the instructor.

The domain of this system concept is similar to that pursued in previous
research sponsored hy NAVTRAFQUIPCEN (Alperovitch, 1982). That work, however,
focused on the acquisition of an initial set of procedures and presented the
user with a pro<.ramTring-like task requiring significant knowledge and skill.
The approach advocdted here uses the IKAS to aid the DE in specifying
modifications of knowledge the s,'tem already contains. That knowledge,
including class-generic knowledgt about the characteristics of variations
obtained in the manual development of a first system, can be used by the IKAS
to provide greater system initiative in suggesting what variations might be
generated and what sort of modifications might achieve them. In addition,
because modifications are always made to an operational set of rules and
procedures, the DE can develop them incrementally and exercise them in the
KBIS through an interface to the IKAS. The DE can thus approach the task
empirically without a fully developed abstract understanding of the opponent
sinul ation.

This alternative has the following characteristics:

a. The relatively limited scope of the knowledge to be acquired by
the IKAS in this ilternative argues for its feasibility. The system
concept reduces the complexity of the task of acquiring procedural
knowledge hy limiting iKAS activities to secondary elaborations, thereby
avoiding initial formulation by oppn-ended specification. However, we do
not perceive -ignificant differences in feasibility and risk between this
concept and Alternative 1. This alternative does have greater potential
for increasing functionality of knowledge acquisition beyond that of
manual methods. The ability to test modifications by executing the
entire KSIS could increase the DE's productivity and decrease the need
for KE involvement in post hoc knowledge-refinement. The generality of
this alternative is limited-C- a class of tactical problems with a common
semantics for situation and action descriptions: tactics problems
involving physical threats and the movement of platforms.

b. This alternative may have a more rapid implementation time
compared to Alternative I if it were coordinated with recent or ongoing
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efforts to develop intelligent opponents for simulator-based training. 6

In this case, at least some of the effort required to implement a first
KBIS in the domain class could be circumvented. Coordination would
depend, from a technical standpoint, on the ability of the
representations used in the existing efforts to support incremental
elaboration. The implementation time advantage may be augmented by the
relatively smaller scope of the knowledge to be acquired by the IKAS. We
,ilso perceive a greater requirement for completeness in specifying
competence models (as in Alternative 1) than in specifying alternative
models of oFponent behavior vis a vis the instructional capabilities that
might use those models within a BM T

c. The implirations of this system concept for UE and KF time-on-
task are similar to those for Alternative 1. DE time should be
comparable to that in manual knowledge acquisition, while KE time should
he reduced by the DE's use of the IKA3, with the net savings affected by
the extent to which the KE must ergage in compensating activities. The
relative savings depend on what other capabilities are included in the
KBIS (e.g., perforinance diagnosis and instructional interventions).
Since this altprnativo for !KAS development does not affect acquisition
of knowledge for those capabilities, the overall role of the KE in
knowledge acquisition could remain significant.

d. This system would require DEs to have a significant
understanding of the knowledge representation formalisms used in the
KBIS. The predominantly procedural nature of the formalisms for
implementing an opponent simulation (as opposed to descriptions of errors
and situations in Alternative 1), would most likely rcquire greater skill
and knowledge of the IKAS users. As in Alternative 1, however, the prior
person-to-person interaction between the KE and DE to develop the initial
opponent model should provide the DE with the requisite knowledge for
using the IKAS.

ALTFRNA,"1VF 3: CONhS/TPUCTION 0IF KNOWLEDGE HASES FOR INSTRUCTION ON DOMAPI
iA V. The third alternative wc describe emerged from interviews with s)vs-'
builders arid i)s at the Navy Personnel Research & Development Center (NPRPC)
(see Section V). in discussing our concept for a class-generic IKAS with them
we learned that an NPROC project had developed an experimental prototype of a
generic KRIS (McCandless, 1981; Crawford and Hollan, 1983) and that attempts
to have ,fEs implement knowledge bases for new problem domains had encountered
difficulties. They believed that an IKAS for the system is necessary if its
application to other domains is to become cost-effective.

The NPROC system was first implemented for the surface warfare domain,

ftorts we have identified incl ude Contracts NSI31q-80-C-9079 (Naval
raiiinj Fquipment C(enter) and N00014-82-C-0653 (Office of Naval Research).

11he Navy Personnel Reseirch & Development Center has also proposed research on
tdctic-al decision making training that might encompass the use of opponent
simul-itions.
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where its objective w,!s to teach the concepts and facts Tactical Action
Officers (TAO) musn, d;l2morize in order to perform threat identification,
assessment, and counter-assignitent. We will therefore refer to the system as
the Computer-b ased Mpi.orizatior System (CMS). Th .M.'. was implemented with a
highly modular architecture. A semantic retwork is used to represent the
domain concepts and facts in a relational datdba:;u. The database describes
taxonomies of objects and object attributes and relates particular objects
with their attributes. Instruction is provided hy a set of seven modular
"games" (e.g., "twenty questions", "concentratinq") ea. of which
independeitl,, ,se , the semantic rotwork to genera te problems. G neration
Jepends solelj c.,; the network structure, not the donain con*ent. Thus, the
CMS architecturo is atually ,ereric to any probleon doTn for which concepts
and facts can be .Josc,'iL)ed using its semantic network forma ism and for which
memorization of fasts is an instructional objective. It hds subsequently been
applied at NJPRTC to knowledtle Doses for the domains of FW, ECCM, and sonar
analysis.

The current fro,,lr.i; r)r crw',iting new Knowledge bases for the CMS are
not conducive to dire, !ise by ijEs. The V nol odge base is created using an
off-line editor antl "ca;mpi !e 1" for us, in the CM. The physical interface
requiros thorouth now o' 1  

)r the pro;rannini sy,; n ;e n which the CMS is
imp! ement,.d. Th, iitar i -,5aratP from the CMS and places the knowledge-
base de,-, ; . ,JI t , : w_ , siO.- y uP,,Ier Lh , u',.r c, ini-, ' tive with no couiceptual
support--for exaiipl, e ,y usi existirg knowledge bases ana data ahout their
development. 41i sucn conceptual support must be obtained externally by the
user. The lack of con(eeni, l support has manifested itself in the Pbility of
one DE to master the physlcaI i uterface and create a svntactically alid
knowledge ease, which nc -chelc.s provided inac', quate behavior in the CMS
games because of the [L s inability to an;ticipat, how the knowledge in the
network would ior qaazatized uc'. to senerate nro;l ems.

Thus, a t, ,d alt rnat ive fo pur:uin,: UK ,. dev,e , menK is to build upon
the , stint. ("4 w,' r , he ohJec-Ccives WoOId )r t,- p ,vieconceptual sup; art
and a more ,,ass '-)1,. physical interfice for the user. 'his altornative has
the follownj chracttristics:

,I. Fe i_,:hil itv t t s al t.,ritive is hiqh:_ r -}Ian for Alternatives
SitO a ,' . lh, . .... r.. ol a (Ieneric K[S . lready i, us, , D .s for

know lqedo , evion ,. is persuisive evidence for the tractability of
the IKA:, , ;t.

b. T io J,!rf ity ,t this alternative is somewhat different from
the concept ,f qnorality we have introduced previously. In the
precedino di,:ussion, w-e used the concept of a .l:ss of domains, to which
an .AS ar Oi, woul i aeply. Each) member of . clas, ould have a
s iqnifican. cworlap oi se.mnanti us and pragmatics and utililTe a common set
, 'tistruc tional o.etncds. Th" CMS (ipproacn achiev; qvnerality by

-sola i ( .i yp, ,i krawledj tht i ' a pIrt, poss IblY a very s:,al 1 par,

Two excettions ae gamoes spe.i fic to the TAO doriain that use graphics.

I:o
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of the knowledge in a very large number of problem domains whose other
types of knowledge may be very different. It thus achieves generality
across domains by greatly limiting scope within each domain. That is,
the system would address only factual, conceptual knowledge, which is
only a small part of what constitutes competence. One consequence of
this approach to obtaining generality is that an IKAS for the CMS will be
unable to use class-generic semantic and pragmatic knowledge for dialogue
management. Instead, dialogue management will have to be based on the
syntax of the network representation and on knowledge of how game
capabilities access the knowledge base. Thus, this alternative appears
to achieve feasibility and generality across domains at the expense of
limiting the power of IKAS techniques available to the system and the
completeness of the knowledge that can be acquired.

c. The implications for this alternative for DE time-on-task are
again difficult to assess. Within the scope of applicability, KE time-
on-task would be greatly reduced since, in contrast to Alternatives 1 and
2, there is no programmatic requirement for KE involvement in the
knowledge acquisition process. We expect however that some ad hoc KE
involvement for consultation and tuning would be required in most cases.

d. As an exploration of IKAS technology, this alternative would
involve less time and resources than Alternatives I and 2. The generic
KIS exists and several problem domains have already been implemented
using it. New effort could be focused on the IKAS architecture and
implementation, unless some re-implementation of the CMS into a more
traztable software environment was deemed necessary to support IKAS
functionality. That the scope of application is limited to acquiring
only declarative knowledge would also serve to control costs and
implementation time for this concept.

e. Users of an IKAS for the CMS would need to have an understanding
of the semantic network representation and its relationship to the
mechanisms of the instructional games. This understanding would have to
be developed by either explicit training or by training embedded in the
IKAS. The latter training might utilize examples from previously
implemented domains. The degree of initial training required would be
reduced if the interface between the IKAS and CMS facilitated an
empirical approach to knowledge-base development (as in Alternative 2).
In such an approach, DEs could readily experiment with possible knowledge
formulations using the CMS games. Because the knowledge involved is
solely declarative, we anticipate that the physical interface to the iKAS
would require computing skills similar to those required by a stand-alone
word processor. In contrast, the specification of procedural knowledge,
as suggested by Alternative 2, has some of the characteristics of
programming and would potentially require more sophisticated computing
skills.
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SECTION 4

IKAS DESIGN CONSTRAINTS

In this section, we consider further constrbirnts on the design of an
instructional knrwledge acquisition system (TKAS). In the previous section,
we enumerated several -riteria for evaluatinq alternative IKAS concepts.
These criteria reflect-d high-level technical and organizational concerns.
The present discussion will consi 4er issues that bear upon the design of user
interfaces tor iKAS systems. The sets of issues are not independent, nor is
the design if an IKAS user interface independent of the purpose and features
of the KBIS it serves. Our main objective for this section is to identily how
rr'uirements for easy usage of an IKAS influence the design of the syster s
user interface.

We first enumerate importu it dimensions of iesi.ii variation in u,er
interfaces, providing for each some background discussion of the current
methods and techniques associated with that aspect of interface design. We
then discuss the design requirtrients in the co;,fext of the general IKAS
concept and its three alternative realizations p sveented in 'ection IV. Iho
evidence supporting our 'onclusions about these requirements draws upon the
literature on human interface desiqn, but it comes primarily from statements
elicited from a sample, of Navy DEs, builders of state-of-the-art instructional
techn logy, an1 developers of knowledge-based systems. We then present
reconinendatiens, which .ire based on assumptions about host system architecture
and capabilities, for formulating a user interface design for a specific IKAS.

We do rot ;)resent here a general review of the growing literature on
human factors in the dk..,i.in of interactive computer systems. Such a review
was beyond the resou,-.cs and scope of the current project. In any case, our
view of that literature is that detailed, substantive conclusions about
effective interface design are specific to task applications, such as word
processing and database query. The interoctive computing tasks that have tw,;'I
studied are very different from the task of transferring new knowledge to a
knowledge-based system. Hence, specific d,;tails of user interface design us,!
in other interactive crwnputing tasks are of limited use in designing the
intoi-face to ,ui TKAS. More general princip)i e' ,f design of the type we will
discuss ir, the k.immon 1ors- of system builders and are difficult ton attrioute
t any one effort, 1hey are also vague. For this reason, we refer to tnv-,, a,
"(,,ui.s" f rt( - ,i qf instad of ac principles of design.

USLP INTEPFA'E ISSUES AND METHOOS

Our use'r interface issues, derived from discussions with Navy DEs and
inst'-uctional system builders, are similar to others identified in the
'iterature on interactive computer system design (see recent reports by Ramsey
and his colleagues [Ramsey, Atwood, and Kirshbaum, 1978; Ramsey and Atwood,
19791 for a bibliography and review of this literature; see Martin [1976] and
Simpson [19821 for similar classifications). A critical feature of the isses
is their interdependence: particular interpretations of how an issue affect.-
design constrain interpretations of other issues. A second critical featire
is that the methods used to achieve a design feature associated with an issue
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are generally not applicable to all interface designs. Instead, most designs
involve hybrid methods.

MEDIA. The issues surrounding input/output media are perhaps the most obvious
in user interface design. The CRT has become aTmost a universal output
medium, but issues about display details--graphics, screen resolution, color
output, multiple displays--remain. Other output media currently receiving
attention include videodisc and computer-generated voice and sound. Input
media include the typewriter-like keyboard built into most CRTs, devices for
spatial designation and manipulation--touch panels, light pens, bitpads,
"mice," and voice.

A major rationale for designs incorporating multiple media has been a
general belief that distributing interaction functions among perceptually
distinct channels is beneficial. There are more specific issues as well
regarding input mode and the organization of interaction that are connected
intimately with use of media. Input mode may scale from open to closed, where
open denotes responsibility for the user to remember and structure--'TFgal"
inputs and closed denotes the system's responsibility to continually inform
the user of "legal" inputs which he may select. The open mode of input is
typically accomplished using artificial languages, which may approach natural
language in their flexibility and complexity. Closed mode is exemplified by
methods such as menus and templates.

Related to input mode is the organization of interaction. At one
extreme, interactions can be organTzed-TinguistcaTTy.-h-Ney-occur on a
dimension of time and use linguistic devices for reference to earlier events.
At the other extreme, interactions can be organized spatially. They reference
objects and actions by direct manipulation of the structure of visual models.
The temp)ral connection between action and effect is discarded (at least in
the context the interface provides to the user).

The linguistic organization of interaction can be combined with both open
and closed input mode. For example, the system can provide its output as text
and accept inputs as command language inputs, choices from a set of
alternatives via a keyboard, or choices made by pointing to its text output.
Many systems mix both input modes. Much recent interest in spatial
organization has been motivated by the objective of making the closed input
:,iode more efficient. However, spatial organization is also compatible with
open input mode. Image editing systems, for example, accept typed inputs or
sequences of movements and button signals from a mousr.

Ri SiTNSIVI NIS. The, physical responsiveness of an interactive system is a
(cOra'),, I"IsM . Poor responsiveness is held responsible for both undermining
Frotivition and directly disrupting the user's thought processes; either case
reduces productivity. On the other hand, it is possible that response can be
too fast for some tasks and some users when thoughtful behavior is required.
The user should neither feel delayed nor pressured by the system's
responsiveness. However, in practice too rapid response is not a serious
concern of system designers.

Poor response has both delay and variability components. It is comnonly
thought that extreme variability is more disrupting than mere delay.
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System response depends on the capacity and loading of the entire
hardware-software environment. Ultimately this means that achieving a better
responsiveness may entail eliminating possible fedtures of the target system.
Unfortunately it is usually difficult to predict system responsiveness prior
to implementation. Thus, one method for addressing system responsiveness is
to design and implement features in independent and separable modules to
permit alternative system configurations.

Anot'-r method for addressing system delay is to signal the user about
expected de'ays of response. This involves endowing the system with knowledge
about itself so that it can indicate to the user when it is about to perform
operations that involve considerable time.

The use of networks to gain access to systems on which the user software
executes complicates the responsiveness issue. Networks introduce delay and
variability that the original designers and imple-nentors can only roughly
anticipate. In addition, they reduce the utility of signalling methods, since
it seems likely that no signalling is better than the incorrect and
inconsistent signalling that a system operating across a network can provide.

FL.EiXIRILITY. Flexibility involves three characteristics of an interface:

a. Alternative input possibilities

h. Alternative output possibilities

c. Handling of errorful inputs

The first two of these are related to the needs and preferences of different
users or of a single user accessing the system for different purposes. One
coranon rethd for achieving increased flexibility is the use of modifiableKrfiles that allow settings of switches. These switches can be referenced by
the iser interface software to seect aTternative behaviors. Other connon
methods depend on the implemented physical media and Input mode. One extre:ile
form of flexibility allows both open or closed iriput specification when
possible. Flexibility in open input is increased by designing a language with
,ultiple device- for expressing the same message to the system. This includes
',,und,!nt lexicon, ilternatlve syntactic constructs, provision of defaults for
• id,., inrlu . an* d re ,.,l iition of andphoric reference. At a lower level,

i f pjartil inputs also Increases flexibility. For closed input,
,u.h ,', menir, flexibility is enhanced by use of multiple media--pointing

devices, krylo,.rd function keys-- as alternatives for selecting among the same
responses.

A system in which errorful inputs cause a system to break--confronting
the user with the interface of the underlying operating system and requiring a
restart--is called brittle. Systems are made less brittle by methods such as
prevention and trappTng- of events thdt cause operating system interrupts and
oy nther "worst case" assumptions in input handling code. More advanced
appnoaches add spelling correction (for open input mode) and other "do what I
lean" cap lbilities for interpreting anomalous inputs. One rationale for the
,ise of (losed input modes is that they are a relatively simple technique for
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making a system more robust.

CONTEXT. Preserving and providing user access to the context of the human-
machine interaction is important for providing recovery from errors,
especially those resulting from user inputs that are semantically meaningful
but have undesirable consequences. The user needs to be able to recover from
such errors by invoking an "undo" command. Preservation of context is also
important for providing capabilities for users to easily interrupt their work
session and resume it in the future. Methods for achieving this capability
are typically linked to conventions for process and file manipulation specific
to the host operating system.

User access to context is important in conceptually supporting the user
in complicated activities with the system. The simplest type of context is
feedback about the effects of user inputs. It plays a role both in learning
to use a system and in preventing the propagation of semantic errors through a
sequence of events that makes them difficult to undo. In a linguistically-
oriented interface, feedback usually comprises descriptions of effects or
paraphrases of the user's input. In a visual-spatial interface, feedback
comprises perceptible changes in the visual model displayed to the user. In
the latter case, the association between previous user inputs and their
results is more difficult to represent, since the model typically has no
natural means for expressing the order of effects on it. Thus, visual-spatial
organization may make it more difficult for a user to remember or reconstruct
what sequence of inputs led to a particular situation. On the other hand,
that type of interface does make the net of all effects continually available
to the user, whereas in a linguistic interface the capacity of the display
medium limits the prior history that is immediately available. The
traditional form of interaction history for linguistic interfaces is a
hardcopv record. Newer methods dependent on high-speed, high-capacity
,lisplvs make records of prior interactions available via interactive
"howse," ~dtac i ities.

Another issue involving context concerns the handling of multipl,: and
'uhsididry contexts. Systems for complex tasks may include different muol.,
for different activities. The scope of a single activity may be too great to
allow all relevant information to be displayed simultaneously. Under such
(ircJimstances, the user can lose track of the local corntext of his
int,.rictlon. One approach to this problem is to alwray,; provide cues, either
linguistic or perceptual, about the current context and its surrounding
contexts. An additional method is to make transitions between contexts non-
destructive by preserving them and providing mechanisms for returning to them.
Such facilities can include user accessible information about suspended
contexts and mechanisms for alerting the user when activities in other
contexts are incomplete. This kind of active monitoring is dependent of the
interface's use of knowledge about the task domain.

iSER CO)NTROL. 11ser control refers tc the system's facilities for allowing tho
user latitude in the way he approaches his task. It overlaps with the issue
of flexibility regarding control over how to enter inputs. More
fun,Jamentally, it includes questions about the degree to which the user can
determfne the order in which he performs different subtasks.
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Interfaces that give the user extensive control of interactions require
qreater resources for context management. They generally require more initial
learning tine to t used effectively. However, they can enable more efficient
use by exprienced users. Interfaces that assume mocst of the initiative in
interactions requiro some internal representation of an acceptable
orgdnizAtion for the tisk. Thus, they are more difficult to implement for
complex tasks. They can make heavy use of closed input nodes and thus can
,nable easy use on simple tasks by naive users. The need for users to take
initiative increases as the scope of a task increases. At the very least,
they need th, ,ibility to return to earlier interactions to change their inputs
or review the events without losing the intervening interactions. One method
for dealing with the user control issue is to provide capabilities for both
full user control and for "hand-holding" by the user interface, with the
ability to switch between modes as desired. This approach requires maximal
support for context management and more intelligence in controlling system-
determined interactions than can be provided by a rigid script.

,S LS KNOWLEGF REQUIREMENTS. Any system design must consider what knowledge
users must have to use a system and how they will obtain it. It is obvious
theft 'he user should not need to learn more than necessary to perform his task
in an effective way. Layered designs can help minimize user knowledge
r' quireomen ts. For example, insulating the user interface functionality from
the undrlyinj syst€em structure helps assure that the user need not know about
the host operiting systm. However, other knowledge of the system is
r, .-csary to promote effective intera-tions, just as a conversation between
two people requires certain shared knowledge and assumptions. At the very
.,ast, the user must have knowledge about the models i:)f the task domain that
the system in(orporates so that he can use them or' map his own models, iF any,
,;nto them; without such knowledge, the user cannot predict the effects of his
interactions.

Thc user can also perform more effectively if he has in understandinj) of
the i'teraction schemas the system employs. This can include various types of

cwl rd- (e: the plan underlying syste-controlled interactions, the feedback
hi, can expect in different situations, the syntax )f ,-,pen input mode
!n uages, and the conventions for accessing and aling context information.
!lost of these, of course, depend on how other iss.ues reqarding the user
nterface have been resolved, so in effect the o~iher issues all have
'ipli:ations for user knowledge requirements.

Approa,,hes to -,tisfying user knowledle requirements may be categorized
e.; oyternal or ir ial to the target system. [xternal approaches may be

ne e er- se ect-on or training. Selection of users whose aptitudes ao111
1'i )r experience htter equip them to interact with a system is possible in
1ij';j t,, (.,ass where the system's purpose does not require universal

,.;-iil ity by a population. Thus, for example, while it is necessary for
, -ry t, 11 r i har to access a system fur recording transactions wlth

,,tomers, it may only be necessary for a subset of them to access a system
ffr -stahllishing new :ustompr accounts. Traininq based on off-line materials
ind ppe-,entd by human specialists is a common method for satisfying user

icw',_dqsj re, larements. This external training is typically not ,dapteo to
,;"s(r nppds: it is unnecessarily expensive for some trainees and insufficicnt
for others.

6?
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Internal approaches to satisfying user knowledge requirements attempt to
increase accessibility by making presentation of the knowledge concurrent with
use of the system and adaptive to user needs. These approaches combine
several facilities in the system's user interface. Usually, default control
of interactions is assigned to the system; that is, the system does maximal
"hand-holding" for new users. The interface also may provide integrated on-
line documentation and assistance. In any situation, the user can follow a
simple protocol to obtain a description of what is happening and what is
expected, without destroying context of the interaction. When the user makes
an entry errar, corrective feedback and tutorial descriptions are presented or
available. In effect, individualized training is delivered as needed and on
request while the user is using the system. Another feature seen in internal
approaches is layered capabilities. Instead of opening the full functionality
of the system to the user, complex functionality is made accessible over time
either under the control of the user or an external monitor. Thus, users need
not satisfy all knowledge requirements before they can effectively uso a
;ystem for some subset of activities.

ISCUSSION. The major conflict in resolving most issues about user interface
design is in balancing the desire for access by new and casual users against
the desire for efficient use by knowledgeable, long-term users. These
different classes of users are generally served best by different input modes
(closed vs. open), balance of system vs. user initiative, and degree of
ontrol over preservation and access to context. The difficulty in addressing

both sets of needs in a single system lies primarily in the cost of
engineering dn array of alternative mechanisms and the difficulty of designing
techniques for smooth transition among them. Engineering costs include both
the software design and the hardware resources. Increasing the features of an
interface lowers the quality of its responsiveness, which can make a system
unacceptable to both classes of users. Maintaining responsiveness as the
number of features increases requires enhancing the capacity and speed of the
hardware system. If hardware resources are fixed, then the interface design
must involve tradeoffs in functionality.

INPUTS FROM SYSTEM BUILDERS AND POTENTIAL USERS

As required in the contract statement of -ork, we interviewed several
potential DE-users of an IKAS in order to gather data--expressions of their
"neoeis ant expoctations"--that might be relevant to resolving issues in design
,)f the sy,Jem', user interface. We also obtained from the potential users
information that hears on the question of whether they can articulate the,
knowledge ahmiit their task domain that the Alternative 1 IKAS would be
d ii Ined to slicit.

fri addition to potential users, we interacted with system builders who
have worked with DEs to build training systems. We discussed their opinions
about the feasibility of constructing an IKAS that could interact directly
with DE-users. We also interacted w~th system builders with experience in
building expert systems for knowledge acquisition. The following sections
report the results of this data collection effort.

6
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ML)ALt

Selection of respondents. We sought Navy DEs who had kiid some experience in
d e-VTo-piInI--or -u-se -oF traininq technology. We wished to establish with our
ioterviewees i mutual understanding and rapport concerning our objectives.
Therefore, we decided that 2citinunication would be enhanced :,y (a) our
knowledge of the respondent's field of expertise, and 'b) respondent's
familiarity with computers and computer-based instruction. Practical
limitation, ir cluded our ability to identify end dr,} access to active Navy
personnel qitVh demanding work schedules.

Our OF sample comprised four individuals contacted either through our
colleagues in the Navy R&D community or through our activities in other Navy-
sponsored &D projects. Three are DFs in surface warfare tactics, and one is
a DE in sonar operation and interpretation. These individuals were assigned
to positions at the Navy Personnel R&D Center (NIRD.' and the Fleet Combat
Training Center (FCTC) in San Diego, California, and had authority to interact
with Navy R&D contrict,)rs at their own discretion as part of their job. They
were either dctively ir voved in training technology development or in
training.

One group of syste:,i builder" comprised six civilian Navy employees at
*JPRDC. These individuals are engaged in R&D efforts to design and implement
prototype trainiri systems for a variety of applications. Some of these
individuals had been involved in the same system building efforts in which our
;)F respondent , had participated.

We alsi) interacted with two system builders at FCTC. These individuals
were Navy officers who were building a system to be used in constructing
eiabudded Craining for the Navy Tactical Data System 1NTDS)--in some sense, an
.KAS. Their particular concern was in user interface design to support access
to the system by untrained, low-skilled users (i.e., not DEs) whose task would
be to enter existing nardcopy specifications of curricula into the system.

dc into-viewed nne other !iavy systeri builder at the Naval Oceans Sys,en
,o1mTand (N(I°SC) in San Diego. This individual had been identified by our
respondents at NPRDC and NOSC as being currently invclved in building a
knowledge acquisition system for a Navy expert system.

At vario,,-; prints5 during the project, we di-cusscd with colleanues from
the Stanrd ,'n versity AT corriunity the feasihil ty if automating knowledge

iit ioe from nF s and our particular concept'; for an IKA" . These
*iiv i 'u 0,. a 11 have eqperience as k nowl d(le en;i neers

* ntprv ,w method. Inte.rviews were arrangtd ind conducted by Keith Wescourt o'
t.h,. projecf- ttff. Prior to the scheduled interviews, copies of the project's
Objectives from Lhe contract Statement of Work were mailed to the DEs. Each
confirmed that 'e had read this material prior to the interviews.

The interviews were held at the respondents work places over a 2-day
periid. y their own choice and our dgreement, the [Us at NPRDC and at FCTC
were interviewed in single group meetings. The FCTC meeting also included the
two Navy officers who were developing the NTDS curriculum development system.

The DE interviews were conducted in an informal style. Our staft itciiber
introduced topics from a prepared agenda when and if they seemed appropriite
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based on the respondents' apparent knowledge and opinions expressed during tne
interview. Since the topics were for the most part outside the day-to-day
concerns of the DEs, they were encouraged to respond to inquiries based on
their past, perhaps idiosyncratic, experiences. For example, they were
encouraged to evaluate user interface input modes by reference to particular
computer systems they had used. The discussion with each group lasted 2 to 3
hours. Both were tape recorded with the permission of the participants.

The interviews with Navy system builders were conducted as informal
collegial discassions. The I- to 2-hour interviews at NPRDC were also
recorded. Interviews with other Navy system builders were arranged
opportunistically during the visit to NPRDC. These interviews were shorter
10 to 20 minutes) and were not tape recorded.

Discussions with artificial intelligence researchers with expert systems
building experience in the civilian world occurred informally at several times
in the project. We will not describe these discussions in detail, but we will
indicate when the opinions expressed during these discussions either reinforce
or contradict those obtained from the Navy system builders.

Interview agendas. The agenda for discussions with the Navy system builders
T- cTjde-d -tF-e-Fo-Towing topics:

a. What is the most difficult aspect of knowledge engineering?

b. How feasible is automation for knowledge acquisition? To what
extent does feasibility depend on already having task and domain specific
Knowledge embodied in the automated knowledge acquisition system?

c. What user interface features does a computer system require to
support direct use by Navy DEs?

Tnese topics wert, discussel in the context of an initial dcscri ption of ,Qj,
concelpt for an IKAS generic to a class of tasks. The respondents introductd
other topics which they thought were relevant to our system concept, iricludin,
the possibility of applying the concept to the enhancement of an existing
instructional system prototype (Alternative 3, described in Section 17).

The agenda for the discussions with the DEs included a variety of
specific questions for each of the following general topics:

a. What is your experience in using computer systens? (How long?
lor what purpose? What physical systems? What conditions of
accessibility? What training?)

b. What makes a computer system "friendly" to its users? (What arc
the strengths and weaknesses of systems you've used? What general
pro;Iems do you perceive? What changes would remedy them? What
preparation should be required before first using a system?)

c. 'h w in you see the Navy with respect to the general trend for
;n-.'s s1nq (onputerization of society? (How do you place yourself with
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respect to that trend? With respect to the rest of the Navy? Are there
important differences within the Navy by age or job area?)

d. How useful have ccmputers been for operational and training
functions for your job area? (Arc there other opportunities? What
inputs from Hs like yourself would be needed to develop the
opportunities effectively?)

P. What experience have you had in interacting with groups
developing -,stems for operations or training? jHow did the involvement
occur? Were there specific rewarding and dissatisfying aspects? How
much background knowledge had to be exchanged before you felt progress
occurred? Do you have any thoughts on how computers might have aided the
system development process? What are the advantages and disadvantages of
becoming involved in such projects?)

f. What is the nature of knowledge in your field of expertise?
(How much of what is required for performance can be learned from formal
coursework? How important are exercise and OJT? Is it hard to describe
the knowledge derived outside formal coursework? How do you judge your
ability to evaluate another's performance in your job area? When you see
so',eone make i performance error in your job area, is it easy to see its
auses? How long would it take to describe your knowledge of how to do

You" job? 'hiw would you help yourself remember and organize the
knowledge you would describe? Do you think there are computer techniques
that 7ould allow you to cornunicate your description directly to a
-,p tr?

Tine constraint, and differences in the DE's backgrounds made it
impossible or inappropriate to discuss with each all of these topics. For
those topics covered, tIe DEs were asked for their belief about how typical
their responses might be of others in their specialty and of how they might
r-xpect responses from individuals in other specialties to differ. We adooW
tn;1s tactic in recognition that although our approach to selecting and
interviewing DEs could obtain candid and detailed data, these data mighz he o
limited generality. By asking explicitly about generality we hoped to obtain
some qualitative characterization that would be of value for preliminary
system design of an IKS intended for a broacler user population or other ti
domains. !n any case, the current posting of these DEs to R&D and training
billets suggests that they are representative of the individuals who would ht
prime candidates for the role of user of an IKAS. Therefore, it is reas-nabl>,
to issume 'hat the DEW remarks represent the expected norm for other,
potential usors in their job specialty, although the generality of thei-
r-,airks to othr task domains and domain experts may he more questionable.

P'iTPVIFW PPr I ',: SYSTEM PIMILDERS.

'In the fcasi hility of automating knowledge acquisition. Fvery nyste K.i i mr
w4, prke wP tl agee-witln--dr- anal-y-is--tat pl-a--g-the Y.r-with a genric

v, quisition system is far beyond the state-of-the-arr. Their
,Ceasv', ir,_:luded those we have stated previously:
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a. The extensive knowledge and interpretive skill required
initially to communicate with DEs and to organize interactions
,ffin tively

b. The dependence of knowledge acquisition on representation
formalisms used in the host system

The dependence of choice of fornalisms on domain features and on
specific capabilities to be realized by the knowlodge-based system,
neitnrc of which is known initially.

The specific tm,,jtures of the interaction between the KE and DE that were
perceived as difficult to automate included:

3. The KE's role as "filte,r and ,ucturer ' , not just a "bridge"
for '-,ir'sferriiq ile lFis descriptions

r. Dote rmination ) f trie consensus within the oi'% n for a spPciFic
ki n know 1ede

7. Tee E's use of evolvinj semantic and pragmatic knowledge to
control the topics and granularity of interactions.

The lr<t of these features bears on the issues of system initiative and
flexibility in user interface design. It questions whether a system that
takes active initiative in a knowledge acquisition system can ask the "right"
questions--those effective for obtaining knowledge while motivating the DE--
using dialog management rules based only on the syntax of knowledge
formalisms.

there were vi:ying degrees of concurrence that an automated knowledgt%
acquisition system generic to a class of tasks is feasible at this tine. This
aoncrt was "oceived as embodying a moderate level of risk, but one

appropriate - " a research effort. That is, even if the effort failed the
process wot;d nave provided valuable knowledge to the community of system
huiliers. One of the respondents felt that the major problem would involve
operationalizing the notion of a class of tasks for use by an automated
knowlod,!e d ( ri iition system. He wondered whether the requisite class-generic
knowl ,.dtp, tji; Id he dri ved from one exempl ar of the class or, if riot, how many
oxm pl ir , oict b studied. Another concern involved the uncertain difficult$

f a'; rr to.)_ nowledj)e a, a KF does in dialogue management. Respondents who
h,id developed a ',jeneric" instructional system (CMS--see Alternative 3,
oection ii' believed that that system instantiated the concept of a class of
tasks. They believed that the difficult problem in implementing a knowledge
,qJi(istlion system for such a system lies mainly in creating a user interface
,rcessi 1)10 to ! s.

On DE knowledge. Although it was no+ included among topics to be discussed
Wth tl-e-_sy-s-em builders, the question of the nature of DEs' knowledge and its
implications for our IKAS concept emerged as a serious issue. One aspect of
that i ,jse is th, lack of consenss in expert task knowledge across DEs. The
rerpondents at NPRDC who had work closely with Navy DEs to build prototype
training systems for several tasks (TAO threat classification, EW signal
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opinions are based on a "best-case" appraisal of their experience. However,
they also indicated how they expect the interface would hove to differ for
less experienced, but equally motivated, users of a system. Their suggestions
are consonant with the conventional wisdom about interface design. In
addition, a few specific suggestions oriented to the IKAS concept were
proposed.

The inputs concerning interface design include those offered by the two
officers at FCT- who were developing an opera+ional curriculum entry system
for NTDS tr-i:-inq materials. Their users were untrained enlisted personnel
and their ideas about interfaces were oriented toward state-of-the-art
techniques for supporting such users.

The respondents at 'IPRDC have found that the skil!ed and motivated DEs
who they have worked with have learned without difficulty to access systems
through the same user interfaces used by the system kuilders themselves. This
includes learning operating system comnmands to invoke the application
programs, interacting with application programs that require user initiative,
and using poorly documentud and inflexible prqrams (typical characteristics
of incomplete research prototypes). One convient about the experience of a DE
using CMS is revealing, however. The DE learned to use the system, but had
difficulty in accomplishing his objective of constructing a data base for a
new application of the system. This emphasizes the distinction between hew
the mechanical aspects of an interface influence accessibility ard how they
influence the effectiveness of access. In the latter case, the user interface
can be more or less effective at supporting the user's conceptual problem
solvinij. Similarly, civilian systm builders also indicated that since
encoding knowledge into a system is difficult even for a KF, major problem
for automated knowledge acquistion is providing conceptual support, not the
mechanics of system access.

Severl comments were mado about featurps !)f the user iliteface deij,
that wrial in r leneral be assoc iatd with th,, i::ipleime ntation of conceptual
,up,) rt. )n#, ,-',;ponden t suggested that .1'; are tbot : e effective and
(.Anfortabie with the elicitation of procedural knowledge while solvins ultj<

proolems. Another respondent suggested two approaches. qne was to support
specification of new knowledg (new inputs) by indicating how it is different
from existing, analogous knowledge, instead o," ihy composition of primitives
from scratch. The second was to support completion of a knowledge base by
generating structural (syntactic) variations automatically for the user to
filter, instead of by relying on the user to remember or formulate the
variations on his own initiative. The respondents did not identify these
features with the need for any particular characteristics of the physical
interface.

With respect to the question of user interface requirements for Dis with
less skill, experience, and motivation, the respondents' replies were quite
)enreral . Ine of then hel ieved that for such user:, the interface shoul d take
n1i x1inal ini t iativ'. 'he held that t'e nved i(r struk-turn (utweighed the:
ps hi)Ie advrse implications for flexibility, oven iI tre resulting
irterdctio'i was so rigid und pedantic as to offend som" user-. Anothor
respondent pointed out that interfaces requiring typing severely reduco the
effectiveness for users with less experience. His cominent seemed to suggest
that linguistic organization of interaction, as well as the input mode dd
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medium, was less effective than the alternatives for, such users.

The FCLFC respondents reported positive results for a system (LTRAN,
"Lesson TRANslator") used by inooyperionced users. The features of the i Tl r' .
interface i;clude maximal use of menus responded to. by tunction keys, sL'
visual orgaization of the interaction, - ,pointi-me device for gr-phmics
interaction, "intelli4et" on-line "nelp" facilit5-s, *nd a usr-invokc-1
"undo" function for correcting mistakes. The spatial-visual organization is
enabled by the nature of the task-- the construction of training lessons for
delivery on the NTDS graphic display. The user of I FRAN continually sees the
lesson as it will appear. The FC:TC respondents feel strongly thdt the user
interface features in LTRAN are important for supporting inexperienced users
of other systems as well. In pa-ticular, the use of graphics displays ano
interactions increases acces ,bility. However, they also indicated that
spatial-visual organization would probably be less effective for tasks in
which there is no existing, natural use of graphics. They believed th.ei
requirements to learn an artificial visual model could increase the difficulty
of using a system.

To sOmlmur zo our discussoons with system L ilderrs, we foli'd:

a. They bel ive that any effort to automate knowledge acquisition
must limit the interd d Jenesality of the system.

b. They emphasize the difficulties in providing conceptual support
as the najor riroblem i., implementing a limited knowledge acquisition
system for direct use hy Es.

r. They deemphasize the importance of the physical features of the
interface to be used oy ',Fs, because trey bel ieve that in general thee-c
are some Es in any specialty with the skills and experience to use any
functionally compl ete intoric ce.

IFl FEP VIEW RESW T : DOMAIN EXPFRTS.

On romputinq barkrqround and atticudes. Al1 of the F r'espondonts ha, a
wo rk ng-kno m!.,{q ao{ [ii-te-rac-th ,-a co iu tei- s ,, 'm; a realii i ,- a ttitude h;brt
the ,;apah' liths a nd Is:'< ,f co)mpi-,,r;, 2,nd ,1 H ,)rdhl atti tudi hout i-h,
ntroduct on etJ n,'w comnputer ts,-hoo,.oy into t.r 'iinni and operational

,or~-, t ,)r theilr sp l(iajty. nne of the 1-2T t Ti e pornnemits had had f 'm
:oJrsewor, in (,4nputur,; at the Naval Academy njod in al MBA pro Iram at a
civilian university. The work at the Naval Academy included BASIC programming
and use of a ''A7 system in a ship design class. He had not done any

programl-ing in,'e leaving the Academy some 4 ye.ars earlier, however. S1i ce
that time, he hod used i variety of embedded computer systems within the NTUS
and other tictisal vrarfar systems. At FCTO, he had a major responsibility
for usinq 'AVIA, ) microc(omputer-hased training system, in a supervisory
rol . le d( f ird new rxerci s, scenari os, p layed the role ( of ,ame directir in
exercises, and ianaged trainev data in the system.

The other, more seno,', 'C TT rcspiondent hal no fOrcidl exposure to
computing. However, hi,; position required him to use various computer-based
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training and administrative systems at FCTC. He also had experience using
personal computer systems outside his work.

The NPRDC respondents had considerable computer skill. One had an
extensive formal background from work in Masters and Ph.D. programs at the
N a v a l P o s t g r a d u a t e S c h o o l , w h i c h i n c l u d e d 4 y e a ,,  f p r o ti r o mm1 tii '
simulations in FORTRAN. At NPRDC, he was the DE member of a team developing
tactics training systems. Part of that work included an independent research
effort in which he was developing on a micro-computer in PASCAL an
interactive, graphics-based, training simulator. In addition, he accessed
NPRDC's VAX/UNIX timesharing system on a daily basis for computer mail 3nd
text-processing activities.

The second NPRDC respondent was a senior non-commissioned officer with
self-trained computing skills. He had taken a COBOL prograiiling course and
had taught himself PASCAL programming at NPRDC. He reported that he was
motivated to find ways to develop and use his skills in his job at NPRDC, even
though this was not strictly required. He regularly used computers to
interact with programmers implementing syste1is in groups in which he
participated. He also was the DE who had worked on adding a new database for
his specialty (sonar interpretation) to an existing training system prototype
(CMS). Thus, he had actually been engaged in an "automated knowledge
acquisition" effort.

With regard to the generality of experience and attitudes we encountered
in our sample of DEs, the respondents at NPRDC recognized their relative depth
of experience. The tactics expert believed his range of experience,
particularly in programming, is uncomnon for other officers in his specialty
and exceeded only by officers whose specialty is computer systems. He noted
that the other DE's knowledge and motivation was particularly rare for non-
commissioned officers with real expertise in some operational specialty. That
DE concurred by pointing out that other noncoms at NPRDC, including those in
his specialty, had a very different approach to their involvement in prniects
devr lopini (.Wfl)U er-hased ,ysteris.

The )fs at FCTC se their experience and attituds as more common, tlou,)!
far from universal. fhey stated that among Navy officers in all specilties,
one can expect a functional computer background from all who attended the
Naval Academy, some of those who attended the Naval Postgraduate School, many
who take courses at colleges and universities on their own initiative, and
those whose specialty includes operational equipment that contain computers.
With regard to the last category, one of the respondents noted however that
the functionality of most embedded systems is less complex than that of the
typical stand-alone word processor. One of their connents was that FCTC may
be somewhat unusual in the extent of its use of computers. This may
contribute to initiative of Navy personnel in developing computer skills.
They were unsure, for example, whether the widespread ownership and use of
home cnputers--five or six of the staff in the TAO traininj group are in this
category--is typ4:dl of other Navy rersonnel. One factor they cited that
affects such initiative is the amount of time required by assigned duties. It
;oems reasonabl, that the opportunities and motivation for self-improvement of
compter skill- 'jeneralize to other Navy trainin, and development centers
where Fs cone into contact frequently with internal and contractor computer
projects. DFs assigned to sea duties and to shore-based operations facilities

71

wool"



are less 1likely to have 1,oth the time and the stimulation to extend their
experience with computers. In any ca,.e, the FCTC A,, believred it would be
rare to find a current Officer who1 WOUla resist learning to use a new system
if he were told its ddvantages. 1hrey sugge-tAd that resistance to computer
technology occurs only a" senior rmanagement levels. in attitudes toward
compu ters then, the Nay y appears to hP dt least a,, if not more, progressive
than other orqdrizations-.

On the features Of USOer interfaces. The Vs ha-I .a va-iety of opinions ahoijt
it)i C r~f E - Many )rtese 4ore vague anl Inea others were speci fic

and described in term, ;o,, particuilar systems thej Ina! used. As we noted, we-
used our perceptiuln; ct u,,eso opifl .rls to (l assi fy the set of "issues" about
interfaces wt es iibW t tois sectdioi . )oinetihdt iurpri singly1 the
DEs had more sophi sticapl--, de1.i cd crle tye on the physical features of
user interfaces Ctlifl toe.c sys t hil Ou hr w2 interviowed. Some of thei r
cotrvnents it 1 east , 1 , v eti'i those giv"en n ' sytAer builters. Une
probl(em the W-1 ; QOn'I J Sety naoj fii ig our discus,;i,--n wis koeiji separa te
the cri teria 'chey iol pV'jy 'o sys--tems usdby other's Ce..,trainees using

-aining systems) 1:ron thojs, they iouldI ap;ply/ to 0 system they wool I use
(e.g., the instruc ta.,r' Sinerc to i trainie system or the interface to an
IKAS). Our discussion w~i t1, lliii iiitecd to presentin or; comments that bear on the
latter type of ujsir.

Much of the dco;'sw~ tn theo FCTC res~jondent' s ddressed the NAVTAG
system's interface, with wnich both they aol, the interviewer were familiar.
NAVrAG maoes fheavy uio of sequopnt- al )nd iie-sted ;ter.usr. The respondents noted
that while this featajre IIa useful very (earlIy in one's use of the system, it
quickly becamel( to~cFe both trainees and Instructors. One aspect of the
problem w s rfesponsjveress the hardware!'software was slow in displaying each
new nenu. Corment; iihoot otnt r systemrs idicated that responsiveness was a
ma1jor i ssue H~rr nrie oi toc i- He suggesctoo that v'hi 1 e some users could
tolerate poor 1)Stt~ V?15**tfor iiso~rs wouldI elect niot to accept and us-~ a
sy5 tei wi th poor res:niosc 1 ime

A secoridi- it to lUQs s f snswas The inability to
imi'lite1j t~ :arti~u a'ict~ on whet! they knew exactly wfiut they ~Ot

to dlo. Tha t I nytewis, infleAiblce. They caid Lhey would prefer a
co(mmalnd 1 iarJu-Q' K'vC W-th Somefl ir'i ima )iilot og, that would give them
nrore in1 t iat iv,,. :t rIition, since they bellove that U~s have minimal typing

ski 1'1 te s tu it ,rljud(je .hou1,.1 [C tersec old the interface should be
flexiblo . ret .'opl i or tortuat errors. One respondent
suggestod that' thf tooiii based, scripted elicitation of responses under syste m
control was i~t objf( tionabIe if the task was to enter a number of connected
inputs (as in fiil~l O ut a template), but that the user needed more control
when choosing the ilopi or interac,,tion arid when modifying a single feature
specified in a prior in 0-raction.

Roth :):,,, et it a rirv, yis- nqli 51 coaviiand lanljuage was

Qhe, next vor , lull ot 'JAV7TAtO i/tilor dov' I )pne)nt on noWe-r, more, powerful
ha r wre * c u ld1 Oittr v rt 'po nsi on-1 V. fl P
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unnecessary for Navy personnel. They routinely use arbitrary, schematic
information-coding formats with rigid syntax in a variety of communication
contexts--they even have to write computer-parsable messages. They do not
object to learning such languages and favor them for their efficiency and
minimal typing requirements over more verbose forms of expression.

Other responses about the use of menus bear upon the issue of context and
feedback. One comment addressed both the preservation and display of context.
The DE criticized the fact that the menus occupied so much of the display area
and that each menu erased the preceding interaction. He thought it important
for the user to be able to review and perhaps change responses in prior
interactions. Another comment cited as a bad feature "being stuck in a loop,"
a situation in which the system rejects a response but neither tells the user
what is wrong with it nor allows him to escape to on-line help or
documentation without destroying the context of his work.

The FCTC DEs were receptive but not enthusiastic about the use of
graphics in interfaces. They saw no particular advantage to graphics,
especially the use of icons, if the images were not already familiar to the
user. One DE thuught such use of graphics is eye-catching but probably no
more effective than alternative approaches requiring less expensive hardware
and software. In addition, use of graphics does not preclude errors since the
user must still remember sequences of actions. The other DE was also
concerned about cost, suggesting that graphics are probably not cost-effective
in infrequently used systems. Both DEs became more receptive to possible uso-
of graphics when the interviewer presented a hypothetical task of specifying a
decision network for sequencing training exercises and illustrated (using a
pencil-and-paper protocol) how graphics I/O techniques might be used. They
thought the graphic display of the network as a graph was conceptually useful.
However, they did not feel that graphic input (via a mouse or other pointing
device) would necessarily be better for the user than the use of menus,
especially if the mcnus and graph display could he simultaneously displayed.
The medium and organization of interaction was important to them only to tho
extent that it could improve the amount of context available to the user.

The NPROC lEs had a different perspective on user interface issues.
Their conments tended to reflect the current common wisdom about interfacr,.
Th- %, ilsc contradicted the system builders, who had deemphasized the nr(,, for
"user-friendly" interfaces for experienced and motivated DEs.

The NPPIC )Fs believed thit while they had the skill- to use arbitraril y
complex interfaces, a good system design would not require extensive learning.
The !)[ who had worked on developing a databac( for CMS stated that he should
not have had to learn the operating system interface and PASCAL language to
attempt that task. He believed that characteristics of the physical interfdce
increa-,ed the difficulty of the conceptual part of his task. Beyond the
phy.ical interfacp's shortcomings, he suggested that the interface should have
provided conceptual support for understanding the data base structure and its
relationship to the instructional gumes. He felt that an application -'yst, n
for DE-instructor users should have the same interface features usually found
in training systems themselves: turn-key access to the application, built §n
training, initial system guidance and prompts, function keys, and descriptions
and manipua-ti-o6s oriented toward the organization and constructs with which
the user conceives his task. Several other comments reflected his stronq
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belief in tailoring system capahilities for ease of uWe. He suggested that
external documentation must avoid "burying" critic,-i details anout critical
basic actions, that system designs should trade capabilities off to improve
learnability and effectiveness, ind that the ne foi multi-media and multi-
mode user interfaces increases as the capabiliti(s of t4ie system become mo:c
varied.

This DE also provided the only comments a),)t -, ,4hics from the NPP[C
respondents. HIe believed 4raphic: are only impo' ,oy when they reflect solid
analogies witih the us,.r's existi r unde-standir 1 )f 1 ne task. With respect to
the interviewer's; pr.-ertation _4 toe hypoth,.ica; do:i slon network
elaboration task, he corennted that direct qraphics ariipulation via a
pointing device would 5e the best input mode for the task because of the
ability to manipulate structures directly and ability to immediately view
results ;f the manipulation.

The other T_ a h imilar v vs. He was familiar with state-of-the-art
"work stations" with siqnificant built-in user interface facilities. He
believed that hardware has been the nai!i limiting factor on interface quality
and that work station tochn:oy was overcomin] thoee limits. He cited, for
example, the ori cnal NAVTAG's inability to simultaneously disp a
geographical plot and tabular status display as a hardware limi,-ion on the
interface that adversely affected the system's usability. He stated that ease
of initial learning, either off-line or by experimenting with the system was
critical--he thought one hour of introduction prio, to serious use was a safe
maximum. He felt tv;o design features would insure the utility of these
learning sessions: (1) the use of system initiiv' ir:d closed input modes
(e.g., prompting, menus, functiorn keys, ind pu'itirl, ;,,vices), and (2)
trdnsparency (matchin] the structure dnd jranularity of interface interactions
to the user's conception of the 'ask).

On DE knowledge and IKAS fesbihity. We obti iid only limited data from thoo
FouKr-s-t- 1ear--on-T#Af feasib-Tty. The ;)o: t i ) in building a
knowledge-bas -d systen was uqfiamilir To the 1C . ,o tly were able to
contribute 1. Je to this analysis. The NPRDC s we'e familiar with that
role and had somewhat more to contribute. Tne i.)s emphasized the lack of
consensus about competent Performance in their .peci Ities (tactics and
acoustic analysis). (ne APP'CX Pi des,_ried t:i J<'a,_ility in experts'
tactical decisior,-, ii, approachncs and toleirio? 'or that variability as the
result, at least in part, of the tasks characteristics: uncertain data, a
large search space for problem solving, and thr heuristic nature of available
procedures. Since no one is ever always right, alternative approaches are
acceptable. One of the FCTC DEs attributed expert performance variability to
the c1opetitive nature of the tactics task which introduces non-determinism
a id prevent; a straightforward as,,essmont of action consequences.

The ,;ecoml NfIRW. Jir co'meritd on the tacit nilture, of expert ,nowledqe in
hi , sp,, i. I ty. fli,, f, ;,r ion;,' is that exports' rationales for their behaviot
do ,)f c.oinc:i'l, with tl:, hm v, ior tih,, exhibit. To induce experts to give
(:oflplPte' con; it(it 'ltionales, it is nece',sary to confront them with
fontradi 1 ,,' htwern what they do and wnat they say they no.

The DEs confirmed the opinion of the system builiders that they do not
havw I ,1ond understanding of why trainees make specific errors of performanc.
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This is in part due to their poor understanding and consensus about
competence. The DEs at both FCTC and NPRDC asserted that in actual training,
verbal interaction is ordinarily required for an instructor to form a
hypothesis about a trainee's underlying knowledge deficiency. One NPRDC OE
believes that most fleet-based DEs do not have the verbal skills for such
interactions and, further, that rank differences inhibit fruitful interaction
during training. He did suggest that performance diagnosis from behavioral
data might be easier in other specialties where there was less dependence on
uncertain situational data and on data interpretations in determining which
procedures to execute.

The other NPRDC DE commented that most DEs have little opportunity to
develop detailed knowledge about trainee errors because training includes
little "over the shoulder" monitoring. One of the FCTC DEs did believe he had
developed diagnostic knowledge for trainee errors from his experiences at that
facility. However, he acknowledged that the nature of the knowledge was such
that performance data from many exercises would be necessary to converge on
diagnostic hypotheses about a trainee's performance.

Only the DEs at NPRDC offered comments on our concept for an IKAS. One
noted that our concept of a class generic IKAS was consistent with his
experience in sonar interpretation, where there are about five different
specialties that all do essentially the same problem-solving task using
different equipment and having different coordination responsibilities. The
other thought that automated knowledge acquisition was feasible, but that any
effort to develop training systems would probably be served best by a
combination of maiual and automated methods. He also thought that an
incremental approach to developing the technology would be critical for its
success.

One mitigating concern was that if development of knowledge-based systevs
became more common, there might be a dearth of DEs with appropriate background
and motivation to assist development efforts. In particular, unmotivated or
inexperienced DEs might fail to contribute to the development of a KBIS
regardless of whether knowledge acquisition was manual or automatic or of what
user interface the automated system had. The other DE shared this concern,
stating that common management practice of assigning personnel rather than
soliciting volunteers could negate the effectiveness of any large-scale
programs of knowledge-based systems development. He believed that suitahl ,
DEs would be indifferent to whether they worked with a human KE or an
automatd system on a system-building project. That is, that they would find
working with an intelligent automated system acceptable.

DISCil'SION A1(0 RECOMMENDATIONS

DISCUSSION OF INTERVIEW RESULTS. The limited and informal survey of system
builders and DEs can only be generalized with care. All respondents were
members of two small Navy communiti, s (other than the Stanford system builders
with whom we interacted informally and the Navy scientist we interviewed by
telephone). These communities are geographically proximal and frequently
interact with one another. The DEs represented only two job specialties that
are somewhat related in function. On the other hand, they represent a range
of roles for individuals with those specialties and they are the types of

7
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individuals who would most likely participate in R&) on knowledge acquisition.
Further, the H s and system builders had interacted oil some projects and hal
shared other, experiences involving the development and use of particular
computer systems. Thus, the comments we received reflect perspectives of
system builders and DEs who might be using an IKAS together today if one
exi sted.

The responses that strike us as most important are those indicating that
the effectiveness of auto.,tated knowledge acquisition Jepends first on
selectinq ap;'opriate 'IF users, regardless of the system's user interface.
Appropriateness seems to refer to the DEs motivation ind basic understanding
of computers. Since w, were told that most DEs of officer rank have the
latter, it seems thai motivition is the key factor. By itself, a user
interface--no matter how user-friendly--will not guarantee that an arbitrary
DE will become a productive member of a knowledge-based system development
effort.

Beyond this ),.rit, we obsorved considerable divergence of opinion. The
system huilders believe that no particular physical user interface
characteristics are required for a motivated DE collaborating in a development
effort. Their experience indicates that such DEs are willing and able to
learn to use the same physical user interfaces they themselves use. They do
believe that any system must provide conceptual support for the user. Thus,
the "what" of human-computer interaction is important, but the "how" is not.
The DEs expect such conceptual support, but they also want a friendly physical
interface to the system. Ilthough they can and do learn to use systems with
idiosyncratic and complicated user interfaces, they find this to be an
imposition arn: an impediment to achieving their goals in using those systems.

The W-s expressed no consen .os ,,i what features they desire in i user-
friendly interface. Like the system! builders, they recsgnized that tradeoffs
exist ind that interface design d e)ends on objc.ctives and functional
capabilities of the sy-stem. The Dils were 1largely nonnlmittal about specifi

edia or organi ?ation - of the interaction. They w,.ere more concerned with
issues of conceptualization rather than how these should be resolved at the
level of input and output implementation. For example, the DEs indicated that
they thought graphics 1/0 methods would be of real value only when the user
already had a snatial-visual framework for conceiving the problem domain.
There was only one consistent media-related constraint mentioned: that minimal
typing should he required to achieve desired functionality.

The h , *er-ziroer issues the DEs commented on were:

a. Res:<.i v,,iss. Poor responsiveness may inhibit effectiveness
r ,t l,-a st. s-e Sr,.. itt was not clear from the comiments whether thi

ma in problem would he in impeding the user's desired rate of interaction
or in colnfnsi nj or ircitating him by slow or variable feedback to his
inputs.

V. Floxi, j )ty. AI t,,'rati , or rich mode:; ) t in iut are unnecessary
hi'.,ause iFav-y i('r,,'nnl are a-cumstewd to schematic fixed artificial
languages. '-xibility in htndlng errors is desibahle.
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c. Context. Preservation and display of prior interactions is
useful. in-Fnnance of context across errors and user exercise of
initiative is critical. There were no comments regarding the degree of
context preservation desirable between work sessions.

d. User Control. The two groups of DEs had somewhat divergent
views ab-u-t-user control. The difference may reflect whether the
respondents were focusing on introductory or repeated use of a system.

The NPRDC DEs favored considerable system control of interactions. They
seemed to bQ considering initial system accessibility and conceptual
support for a user. The FCTC DEs favored global user control of
interactions with system control exercised locally within particular
types of interactions. They seemed to be considering long-term use of
systems and their opinions may have been influenced by experience with
systems having poor implementations of system control. Both groups
believed that user control to escape a system-driven interaction is
necessary. Much of their concern with context management centered on
supporting this type of user control.

e. User Knowledge Requirements. The DEs thought that a
knowledgeae-user-oughtf-_ -WSbT- to use a new system effectively in
approximately one hour. To do so, they believed that off-line
documentation must be organized effectively and that on-line help should
always be available. Their strongest comments regarding user knowledge
requirements concerned transparency. They believed that transparency is
instrumental to reducing the amount of new knowledge required to access a
system. We see this as a further statement about the need for conceptual
support if a system is to be used effectively.

Most of the comments collected on the feasibility of an IKAS came from
the system builders. They all believed that a generic IKAS for knowledge-
based systemns is not currently possible nor may it ever be. Their beliefs,
like ours, derived from the perceived dependencies among system objectives and

capabilities, required knowledge, representation formalisms, and knowledge
elicitation methods. Some system builders thought that IKAS development withi
more limited applicability was, however, a worthwhile goal. Such research
could aid future system building and maintenance efforts. More fundamentally.
it could contribute new knowledge to the field of knowledge-based systems
technoloqy.

'oinient, frOm m P;t system builders and )F s supported the concept of j
-ls-,i eric KAS is a feasible focus for research on techniques to support

knowledW 1( i quisitlon. They agreed that the concept of classes of tdsks was
at least intuitively viable. The system builders believed that there are
difficult problems to be solved if the IKAS system is to use class-generic
knowledge to support its interactions, but that solutions to these problns
are possible given the current state-of-the-art.

The groatest concern about the IKAS concept involved the question cf
whether DEs have and can articulate the types of knowledge an IKAS would he
designed to obtain. There was consensus among the system builders and DEC.
hat, at least in the specialties with which they are familiar, Dis do not

have good causal, diagnostic knowledge associating performance errors with
knowledge deficiencies. The system builders also questioned DE abilities for
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functionality could proceed with less extensive hardware-software
resources using a more modest and limited physical interface.

iI
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a MANAGER -, XFRCISER
Poi nters to i(rform~t ioni in the viiowledge base

h RECORDFP -> MANAGFF1
lnfoirrnat.n prifntto kolgebase checkpoi n incl

-i~d ;r ?' r)- d- iS' n S

c -AtA(FOR I OKER

Pimin it -is *r i fonrra t ieo'ri ft" krnowledge base

Puin tr mf'ornatiori in the knowledge base

P- , *i,-,i t*" i @0 1 s the kriowi edge base

ti'actionrt ric1

j PLANW 1r ' 1 HOR
t it icr ierida and rationa~e

Riesul ts of knowledge check

k CIHF(K1I 1) i pO
Pesil ts f knowledge check

1 PPE' -) -P -) k a'kuJS
Pr-in 'crne rlf ni tiors and reLsul ts

Know]' lo--ase trodifticatier, to to,- hrnkE I

* EDITOIR -)ru:_,K kQ

Knowledge ? nd fia i o' to b ho wlod

1 F PC JIN -> PICIPDFP
Fn'r. ise nr- erris

p HI C IOR -> W&NACER
Request for, knowledge base pointer
Changes to current knowledge base

r tDTfll - MANtCGF
Request fon knowledge base pointer
Changes to cournrt k row' edge base-

Ti pr e '(olcrit. r /C :i r, tI r r



NAVTRAEQUIPCEN 82-C-0151-1

s EDITOR -> ELICITOR
User response to ELICITOR query achieved via EDITOR use

t ELICITOR -> USER ASSIS
T
ANT

Queries to user
Error information

u EDITOR -> USER ASSISTANT
State information
Error information

v EXERCISER -> USER ASSISTANT
State information
Exercise results for user
Error information

w USER AS'ISTANT -> ELICITOR
User responses to information requests
User requests to restore prior state or
modify prior inputs

USER ASSISTANT -5 EDITOR
User coimnands
User requests to restore prior state or
modify prior Inputs

y JSER ASSISTANT -> EXERCISER
User requests to test system performance

z HELP FACILITY -> USER ASSISTANT
Pointers to on-line documentation

aa HELP FACILITY -> CAI FACILITY
Pointers to on-line documentation

bb HELP FACILITY -> USER WORK STATION
Documentation requested by user

cc USER ASSISTANT -> USER WORK STATION

Information passed by ELICITOR, EDITOR, EXERCISER

Responses to rpquests and commands trapped by
USER ASSISTANT

dd CAI FACILITY -> HSI R WORK STT ION

Instructional content

ve USER WORK STATION -> HELP FACILITY
Requests to examine system documentation

ft USER WnRK STATION - JSER ASSSITANT
Inputs to be passed to ELICITOR, EDITOR. FXERCISER
CFommands and responses to USER ASSISTANT

USER WORK STATION - CAI FACILITY
Inputs to instructional interactions

Figure 2 (cont.). IKAS architecture
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a. Alternative I. The ELICITOR can determine c- suggest whether
the us, r slioUf- T;cnu- on (1) sequential ly describing performance
chracteristics, situation characteristics, or mappings of observables to
deviations from the competence .iodel, or (2) all (if these for successive
segments of the competence model. It can ask about situation
characteristics qhen particular performance characteristics have been
specified. It can suggest tnk the user invoke the EXERCISER when an
unfamiliar form of variation from the competence mooel has been specified
as an explanation of a set of performance characteristics.

b. Alternative 2. The ELTCITOR can determine or suggest whether
elicitatTH6--i-uT-be orar'ized ar.cording to situations or to procedures

and -ules in the existing opponent simulation. When focusing on a
particular situation, it can ask about whether specific rules and
procedures, ;,pplied in "sir:ilar" situations, might also be applied in
that situation.

Alternatv.w 3. c . DIOR can detormine or suggest whether
i,-- t.i tt -o,i Joh ,l.f p ,:,r 1 ,- raL i on of ia <a:nomi (s or the attributes of

tit, _,Icpts in he t a oT;', . t can ask .whether features associated
with . ,nropt I n als o associated with concepts that are "close" in the
ti l, (,, rfic st,.ctu,e. It ,ai suggjest that the user invoke the EXERCISER
whpti a concert with new types of attributes is described.

ITWP. The FKITR allows the user to huilo, modify, and inspect the
knowleiqe base under his own initiative. it is also 3vailahle through the
K iFTOE as c. nod for responding to some requl:sts for, selection of elements
i', the knowledge base and for description of modifications to knowledge base
structure.

t i-o Pr FTCR supports transparent, structure-oriented specification of

,.ttrrltion and ;.iodification. That is, tOl. 'r,inularity of its conriands is
n wi tO he synt ix and semantics of the knowl edge-base formal i sms, n.'

th, .- lrvei .oftwar-e- and hardware-oependent implementations of those
, i -: 1 h KAS (Pehoh, VR! ) network editor is a good mode for such

f ict i0orit . idditional support for handli , syntactically invalid coinnands
.: 1 pl VoJ i 0; '" i put 1node is obtained through th- ILIIITOR's interface with
L.Si A ... AW', while support for handl i rig semantic and pragmatic errors

)I nIorii'd from the CHECKER. Lrror checking is performed on each input to
provide, th. uor 'mmediato feedback.

Tin fe )I iiso must provide context display of the local focus of
attention viithir, the global knowledge base. If the representation formalisms
for a domain liss are conducive to graphic display and manipulation, context
displiy might ;mprise dynamic "maps1 of the knowled,]e base displayed
concurrentlyt with the local editing window. In addition to context display,
the F ) DITOR O ust a0.,o frablo the user to locate xlisting knowledge and change:
attentlo, 1,y ';pecifying artial descr'ptions,. Other context management
function',, such as maintenance and display of alternative contexts, are
handl,, i', ncharnisms external to Lhe EDITiR.

E xanles.

I0
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a. Alternative 1. A schema-based editor is possible for
descriptThT6-o--F-rfrmance and situation characteristics embedded within
a network editor if those descriptions are hierarchical. The frames and
schemas are manipulable as slots and values of defined types. The syntax
of each defined type determines the granularity of access to values of
that type. A network, procedure, or rule-based editor would be used for
elaborating deviations of the competence model, depending on how it is
represented.

b. Altc-rnative 2. An editor allowing manipulation of networks,
procedur,-aic[-ru-Tes would be used for elaborating alternatives to the
opponent simulation model. A network editor would allow manipulations on
nodes (procedure or rule designators) and links (control paths) to
specify deletion, insertion, and reordering of node invocation. A
procedure editor could be oriented toward modification of defined
procedures rather than composition from scratch, A rule-editor would
allow the user to manipulate the specification and logical composition of
primitive clauses in the condition and action portions of the rules
governing opponent behavior. The syntax of the clauses would be used to
determine the granularity of access to their components (e.g., as members
of tuples in predicate-object-value conditions).

c. Alternative 3. A network editor would be used to specify
concept an -iftr- faxonomies. It could be combined with a schema-based
editor to permit specification of concept attributes and attribute
values. A graphics interface could be used to support the network editor
and would be advantageous for its context display capabilities.

EXERCISER. The EXERCISER gives the user access to the host KBIS. Its majo-
function is to provide conceptual support through feedback about the
relationship between user modifications of the knowledge base and behavior of
the K9IS.

A variety of EXERCISER capabilities might be implemented. Most sinl',
tho IKAS user may he allowed to access the KBIS through its instructor ,*-

student intrt-ices to assess system behavior is h, changes the knowledge boh.
Additional control over configuring the stale of the KBIS would allow the ;or
to Oire-tly configure and test an "interestin!;" ;i tuatlon he wants to examilnc.
As in some expert consultation systems, the user could draw from a libriry of
problem cases or use an editor to alter these cases in order to exercise the
KP1S and obtain summaries of results. In addition, the EXERCISER could he
used to automatically select entries from the library according to a set 'if
heuristics. These heuristics would seek to thoroughly exercise new or
modified knowledge entered by the user. The requirements for and feasihility
and implementation of these EXERCISER capabilities are a function of the host
system's capabilities and implementation.

Fxamples.

It. Alternative I. The EXERCISER could be used to determine tho
rmqo of-beha-viors classified with a given set of performance
chartcteristic%. After postulating certain errors and circumstances in
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which they should occur, the user could observe performance of the model
on problems for which the anticipated errors should occur. He could also
test the reliability of performance diagnoses as the knowledge base
yrow .

b. Alternative 2. The user could observe prformarce of variants
of the o-p- nen-t-s-fniuTation in different t1,1,tcal situations. He could
also observe the performance of all the variants in a particular
situation. Thus,the FXEr,ISFR s-ould he u!ed to oeturniine the range of
behaviors tie.? opponent could exrihit and the conditions under whch
different behaviors would be invoked by the KBIS.

c. Alternative 3. The u ,er could observe use oF his defined
concepts -in d ferent instructional games. He could o'serve the games'
sequential behavior for a set of concepts. In each cd-e, he could
examine the selection rules used by the games i acpssi,,(I the taxonomics
and concept definitios.

RECORORI. The R[U§RD :( icts as i comon ' rce recent context about
activi ties in the 1,L7IC ITOR, L'J TOR, arid XL,.,.ISER. ;ni information supports
the PLANNER in its, riaintenance J 4 aagel(, Yr'r i.ter ction topics. It
provides 1h,0. sili, context to tee FX[RCIS:R to support any bookkeeping or
other, FXFPCISFR functions that *Thpend on knowledge o interaction history.
The nature of the stor(d "context" is depen(lent on the functions of the
FLIC!TOR, EDITOR, and EERCIS[R. These will vary from application to
ipplication. Generally, context" refers to the focus of attention within the
knowledge base, what e fects were achieved at that focus, and how they were
achieved.

The RECORDFR also provides results of EXERCISER invocations to the
MANAGER. 'These results are used by the MANAGER to mdke decisions about
archiving of the knowledge base in physical storage.

PLANNER. The PLANNER generates the agenda used by the ELICITOR. It uses
heuristic rules that operate on the knowledge base and the information
maintained by the RECOIRDER to produce a sat of proposed topics and user
quories to stimnt ito the qrowtt: of th knthe ,e.V , o se. The PLANNER' s rulos
emhody knowl d,1, (acqtiired 'by the 0IK. s wo ) engineer the first KIk1S for the
dornain ibou aTut the syntar.is structure rnd class-9generic semantic and
)ragl,1ti, i nowlt'dq, of the iwiiin. This knowledge can he use'd to define

di.alog) ) t',.'. ,mid transitiors that art, sensible in terms of' their conceptual
relatIonsh-p, liir importance. They also embody knowledge about more general
aSpe, ts of dialogue management--for example, the need to vary content and
styl, to avoil user boredom.

Since the IKVV d i n is oriented toward a mixed-initiative approach to
control, the PlANNiR needs to plan an agenda only for a short time. horizon.
As items from the agons;a are exes.ute.&, the PLANNFR is invoked whenever the
user has problems fulfilling the ELTCITOR'z requiests or assumes the initiative
by invoking the EITOR. At that point the P[ANNEP replans the agenda. If the
user ;houli (,ompltte the local agenda, then the PA ER is invoked to plan for
another short time horizon. This dynamic planning and replanning for a snort
time horizon insuros that the FLICITOR's behavior is always sensitive to

,IA
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recent events. In particular the ELICITOR should follow up on episodes of
user initiative.

The PLANNER saves a rationale for the agenda. The rationale describes
for each agenda element which rule or rules caused it to be included and what
features of the knowledge base or context caused those rules to be applicable.
This is similar to the rationale provided by rule- 'ased expert consultation
systems. The rationale can be used by the ELICITOR to justify its behavior in
response to user request. The ability to supply rationales should make the
user more confident in the ELICITOR's behavior and provide information the
user can weigh in deciding whether or not to invoke the EDITOR to work under
his own initiative.

CHECKER. The CHECKER provides error checking for knowledge base modifications
entered through the ELICITOR and the EDITOR. It detects and reports to those
modules structural and semantic anomalies in the specifications. Such
anomalies may include a modification that would make a taxonomy circular, a
value for an attribute that is logically inconsistent with the value for a
related attribute, or a rule that will never execute because its activation
conditions are subsumed by other rules. The use of closed input modes by the
ELICITOR may preclude some such errors from occurring, and the ELICITOR and
EDITOR may perform some error checking on their own. However, such checking
will be local to the focus of attention. Generally speaking, the CHECKER's
role is to provide more global checking against the existing contents of the
knowledge base to prevent modifications that would produce errors when
considering the overall definition of the knowledge base. This capability
requires that the CHECKER incorporate meta-knowledge about the structures and
syntax of the knowledge base. Such error checking has been a feature of the
knowledge acquisition support of several expert consultation systems (see
Section III).

In order to avoid the compounding of errorful specifications, the CHECKER
operates on the contents of each modification entered via the ELICITOR and
EDITOR. Following such checks, the EDITOR and ELICITOR forward modificati ins
to the MANAGER. Information about CHECKER rejections is forwarded to the
RECORDER since it may be of use in planning the elicitation agenda.

MANAGER. The MANAGER frees the user and the other modules from the
responsibility of coordinating the management of the knowledge base and its
physical storage. Rather than operate on separate, local copies of the
knowledge base, the modules share a single virtual knowledge base maintained
by the MANAGER. This centralized management appears efficient for supporting
mixed-initiative elicitation where both the ELICITOR and the EDITOR are usid,
in an interleaved manner.

The MANAGFR must maintain a chronology of knowledge bases so that the
F ICITOR or the user (through the E0ITOR or EXERCISER) can access and perhaps
rostore prior, contexts. The objective is to allow the user to examine and use
prior or alternative knowledge bases and to protect the user from loss due to
system orrors. The physical storage state of earlier knowledge bases .id tho
method for representing successive variations is invisible to the modul>s and
user and depends on knowledge the MANAGER has about the underlying operating
system and hardware. The cost of the capability to restore any arhitrary
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prior state would appear too high. In the short term, the RECORDER and USER
ASSISTANT may contain information sufficient to restore to any ,ec t context,
but in the longer term some internediate state information needs to be
discarded. The MANAGER preserve, snapshots of the knowledge base at points
specified by the user fthrough the EDITOR), the ELICITOR, and the RECORDER.
Those modules include heuristic rules for determining critical junctures at
which a complete long-term record of context may he required. The MANAGER may
also determine requirements for saving a full context based on its information
about system state.

USER ASSISTANT. The JSER ASS'SfANT monitars and supports all of the user's
interactions wi-hn re ELII-TOP., EDITOR, and EXERC'SEk. It is modeled roughly

on the capabilities for Ioin-Ievel user support provided in the INTERLISP
programning system (Teitelmar., et al, 1978). These capabilities include
correction of spellin.q and oher--rTple syntax errors; examining, redoing, and
undoing recent ov,:nts; support for user-defined procedures and abbreviations
("macros"); and readd a:cess to context-sensitive help documentation. These
capabilities reduce the consequences of errors and allow the user to operate
niore efficiently by focutsine on hi , conceptuel task rather than low-level
conmiunication wi th the system. instead of supporting each of these
capabilities within the user--accessible modules, they are achieved uniformly
within the USER ASSISTANT in order to promite greater cons;stency.

The USER ASS SIANT operates by trapping all I/O with the user, examining
it to determine whether any of its procedures are applicable, recording it,
and passing it on. Its capabilities depend on its knowledge about the
subsystems with which the user interacts (e.g., spellinl correction lists,
syntax for open input modes, inverse operations for undoing prior events, and
pointers to information in the help facility).

HELP FACILITY. The HELP FACILiTY is a documentation database for the IKAS
used by the user, the CAI FACILITY, anU the USER ASSISTANT. It supports two
types of interaction. One, available only to direct use by the user, provid.
a documentation "tree" through which the user, can browse in a more or less
top-down manner. In this mode, the documentation provides a well-organized
on-line reFerence manual. The second type of interartion is query-based ard
is availahle both so the user- tnd the ot!her modules. Inputs in a query
language are usd to -,pecify database searches and th result is given to the
invoking source.

Roth the, query language and the resilt are str-ctured in a machine-
readable form to illow unlform use by the other nodulfs. Those modules
,hter'rmll, how to ,1i pl.iy or othorwise ue the resul ts in their own interacti
context. !h H[1I.1P FA(S LITY lis it; own user interfow-e for allowing the user
ti compos.e (oerifs f' ) more naturai modo of expres';ion or for displaying
results in a consisteont human-readable form. The input interface includes

both closed (menu) and open (command language) inputl mode alternatives for
flexihility.

'A' :A'I, ITY. Thev SAl FACILIlY uses an ad hoc frame-oriented approach (the
Al analog to i proqramnmed text) for deliverig a tutorial Introduction )n the

use of the IKAS. Much of the content of instruction is retrieved from the
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documentation database in the HELP FACILITY. Additional content, such as
examples and questions to test understanding, are stored as a separate
curriculum data base within the CAI FACILITY.

In our design, the CAI FACILITY is not integrated with the main IKAS
modules. Thus, it can not dynamically invoke hose modules to present "live"
examples, nor can it obtain any information about the errors the user makes in
initially using the system, when he may switch between "playing" with the
system and accessing the CAI FACILITY. It is limited therefore to simulated
examples and in its responsiveness to the user's particular situation.

We do not believe that a more sophisticated CAI FACILITY is necessary for
those IKAS concepts that entail significant interaction between the DE and KE
prior to DE use of the IKAS (i.e., Alternatives I and 2). Under Alternative
3, a more integrated, powerful CAI module may be required to provide self-
contained initial access by users. Work on an initial IKAS development effort
can, however, proceed independently of requirements for CAI capabilities.

SYSTEM FEATURES

The system architecture described above is intended to satisfy several
design constraints. These include:

MIXED INITIATIVE. Knowledge acquisition is either system-directed via the
ELICITOR or user-directed via the EDITOR. The user can take control of
initiative at any time or pass the initiative to the ELICITOR.

DYNAMIC CONTROL OF INITIATIVE. The flexible mixed-initiative interaction is
made possible by dynamic planning of the system's knowledge acquisition
objectives. The PLANNER uses context information saved by the RECORDER to

maintain an agenda of knowledge acquisition topics. Knowledge acquisition
objectives can thereby be altered as necessary to reflect the outcome of prior
interactions, whether they were system- or user-controlled.

CONCEPTUAL SUPPORT FOR THE USER. The ELICITOR uses class-generic knowledge
from the knowledge base and domain-specific knowledge already entered by Lhe
user to generato and interpret user inputs using abstractions consisterit with
tho utsr's description of the domain. The EXERCISER enables the user to
in pt ind invoke the host performance system--the KNIS--to test the
per.formtv.-f of the system using the current knowledge base. In addition, trw,
41.P and CAI facilities can include reference and tutorial information for
supporting the user's understanding of the system.

1O JLARITY. Functions for changing and using the knowledge base share common
resources for supporting user access, for checking inputs for possible errors,
for recording context, and for actual access to the permanent knowledn base.
Different aspects of these functions are accomplished by more than one
resource (e.g., context management as a function of time by the RECORDEP and
the MANAGER). Modularity is of course desirable in almost all systen
architectures. One advantage of modularity in this application is that it
should enable incremental system development, thereby enhancing feasibility.

-1-"
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It also provides both greater consistency and flexibility in the user
interface.

CONSISTENCY. The MANAGER mediates all interactions between the various
modules and the knowledge base. Both the MANAGEk and RECORDER free the user
from concerns about how to access and update the knowledge base by prividing a
uniform access mechanism to all the modules. Differences in implementation of
knowledge base access from these modules should thus be invisible to the user.
For error checking and context recording, the CHECKER and RECORDER should
apply uniform mechanisms regardless of whether they are invoked by the
ELICITOR (system initiative) or the EDITOR (user initiative). The ELICITOR
where possible allows user inputs to be accepted via the EDITOR, providing the
user with a consistent input Interface under both system and user initiative.
Finally, the USER ASSISTANT provides consistent, low-level monitoring and
intervention for all user inputs to the major user-accessible functions.

FLEXIBILITY. Flexibility is inherent in the user's ability to shift the
responsibility for initiati 'e -3t any time to use either a special ELICITOR
input protocol or the EDITOR when the ELICITOR is in control . Additional
flexibility can be achieved through the USIER ASSISTANT, which can implement
low-level lexical and syntactic err-or correction and support a consistent set
of alternative I/O protocols (e.g., using multiple media, partial input
specification, display formats) for the user to select when interacting with
the three major user, functions.

TURN-KEY ACCESSIBILITY AND USE. Suitable implementation of the USER
ASSISTANT, the HELP FACILITY, and the CAI FACILITY could make the system's use
independent of external documentation and human support. The major burden is
on the CAI facility to help the user understand the performance system's
representation of the domain if that understanding cannot be developed via
prior interaction with a KE.
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SECTION VII

CONCLUSIONS

During the course of this project, considerable effort addressed a
careful analysis of the role of the knowledge engineer (KE) in the process of
building an expert system. This analysis was directed toward the
determination of feasible concepts for automating functions now performed by
human Ks. The nature of the knowledge engineering process and the
prdctitioners' current understanding of it appear to limit, at least for the
foreseeable future, the scope and generality of possihle automation of the
KE's role in knowledge acquisition.

The KF uses knowledge and information that is incomplete, inconsistent,
and heuristic in attacking his objectives. Part of the problem lies in the
communication gap that exists initially between thc KE, the customer, and the
DE. Another part is due to the fact the knowledge-based systems technology--
although it has been applied to some real-world problems--is still irmature,
lacking the breadth and depth of applicahility needed for the emergence of
systematic, general ethods. As a result, the knowldqe engineering process
is iterative and incremental, with experience gained early in the process; used
in snhe'luert s tai's to refine ind revi-sr system objectives and behavior.

The iterative, incremental nature of knowledge engineering impl ies that
knowledge acquisition, a single objective in the entire process, cannot be
isolated f'-on other objectives by automation without. interfering with the K" 's
pi,-sait of those other objectives. Thus, stand-alone or near stand-alone
automation for knowledge acquisition in building a knowledge-based system is
not feasible at the present.

Given this conclusion, we developed a system concept for automating
knowledge acquisition that avoids a gene, al, comprehensive approach i2 favor
of a more fcasible, usable alternative. The concept is Dased on the notion o,
a class of relited tasks. It proposes that once a knowledge-based synt' s
i;o!plemented "manually" for one task in the class--toereby achievingI all
KEs ohbie tive---it would he possible to automate elicitation from domain
exprrts of knowl,-dqe bases for other to,;k s i,. the class. These knovl d,,
hi',is woul d , ., ,,l ,n a system with the sa ,,imme &ipm i 1 1 tii<. a rd ,rchi tec to ur .
thlt fir,J t yst,''1 . The knowledge acquisitiort m ,r.hdni sums would make u,' Ml
ni(wlde arid informnation obtained in the first effort; hence, they w,%ull hi

specific t,) thint knowledge-based systms archi tecture fur that -l ass of tasks.
Aitomatel kii.evlo i'e acquisition would still proceed incrementally and
irrratively throughout stages of formalization, implementation, and testing.
However, only the knowledge base of the system would be affected by this
process: all 'ather aspects of system design and function would remain fixed.

Although limited in scope and generality, 'n;s approach to automating
k-iowledqe acqui-Jition should be worthwhile fnr isses with many mentrs or
for systems where new knowledge must be added quently over the 1ife of th
system. It builds upon prior research on assiscance for knowledge
engineering, which adds to its credibility. However, it involves solvin',
sinnificdnt new problems. Perhaps the most important of these are (I) how to
identify, formalize, and uso class-generic ahstractions, and (2) how to

In
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provide conceptual suppur,t to a Ors that would enable D)s to use the system
di-ectl v.

The tnirc a trn tiv e a ppli :>tions of the automatical knowledge ac qu iion
concept presoried in Se:tion IV have different costs and expected benefits
,ccordinq to the Crittria cons dered. ilowever, edch appe.ars to present ,
promnisin9 and productive avenuc for realizing new capabilities in automated
knowledge acquisition, Non-technical con,;i.cera Jons regarding organizitional
needs or syniergy with on-goinq research programs iay ultimately influence
which alIte' , -iw would be ros fruitful to pursue. Although our concept
definitions were shaptd primarily by techni(cal considerations, we also were
influenced by our perception,, of those contributi, ns that would provide high
value to the Navy at this timo.

We also determined that a detailed design of the user interface for an
KAS is not possible without ccmitment to a specific, detailed KDIS-IKAS

architecture. However, our discussions with Navy system builders and DEs
indicated that, while the details of an IKAS' user interface are not
inconsequential, they will probably not deteriine whether Navy DEs can
effectively use initiil IKAS technology. instead, selection of users and
high-level user interface characteristics not identified with particular media
or i!iteraction protocols are more critical for a successful IKAS
impleentation for a navy trainin. system. 4e therefore ;iade the following
recoriendations, reflected in the architecture proposed in Section VI, for
pursuing Further de-) go of an IKAS-

a. onph,3Si7e conceptol support and transparency.

h. e,-jn the l,,ledge acqoisition strateqy to he modular with
respect to acquiinn d f-ferent types of knowledge.

7. . P ,xtens yve cn-line help/documentation f,':1ities and
inte! ilent ,n text :)anagemren .

d. Defe- ( ofiritilnents on rUth0- ser interface issues in an
incremental iesic n and level ,y,; nt lporoach.

We beliorve tiaIt !v followinIg these rec.orran'nnatics further research co-,
h I. 'apon ho, resun ts of the pire s~o t a oject. to devol ) a first effectiv ,

II
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APPENDIX A

ILLUSTRATIVE INSTRUCTIONAL KNOWLEDGE ACQUISITION DIALOGUE

This Appendix presents a hypothetical dialogue between a DE and an KE who
are working together to define knowledge to be used by a KBIS for surface Navy
tactics training. It is intended to illustrate some of the requirements for
eliciting knowledge used for trainee performance modeling (see IKAS
Alternative 1 in Section IV). The dialogue assumes the KE and DE have been
interacting for a considerable time and that a competence model is largely
completed.

KE: We've considered the procedures and rules for successful defense of a
sTngle ship from surface and air threats. Now let's consider how things can
be done wrong if a TAO lacks that knowledge. In particular, I want you to
think about training exercises you've supervised and the errors you've
frequently seen and what causes them. Let's limit ourselves first to "weapons
free" situations. You indicated earlier that decisions were contingent on how
strongly you believed your opponent had sufficient data to target you. Are
there important errors that you've seen there?

DE: Well, yes. It's mostly a case of keeping track of his and your emissions.
T-guess one common mistake is to forget about emissions you may have produced
before you knew he was there, like HF or even UHF communications. I think I
told you that If you detect him passively and you have put out some emissions
you should start a zig-zag if you are authorized to.

KE: So in that type of situation, not seeing a zig-zig would lead you to
e-lieve as an observer, that a TAO either had forgotten about the emissions
or didn t know that a zig-zag was the thing to do then?

DE: Yes, most of the time. Depending on what type of opponent he believes he
T- facing, he could decide it was very unlikely that the opponent could get
targeting information passively from the emissions. In that case, he might
not zig-zag. And remember, you can't always zig-zag; it depends on the
formation and on whether you happen to be on a ship with certain types of
towed sonar deployed.

KE: Right, I can see that here in my notes about manuevering. You gave me
Elose constraints before.

DE: Remember too the deception angle. If you really think he has targeting
Wta and is Just waiting to get a better shot, then you might buy some time to
get your own systems ready to fire by NOT zig-zagging. So, it's not all that
simple to say from not seeing zig-zagging that a TAO has not been thinking
about his emissions. it's a matter of judgment. Like I told you, you don't
want to be too cute. If the situation is hot and you gave him some passive
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data and now you have some from him, you really want to think about going
active first to get targeting data.

KE: So, the way you would really evaluate a TAO's performance is whether he
Tiet the opponent get off the first shot on a good intercept heading?

DE: Yes, it's pretty imprecise--sometimes you can weigh the odds as best you
can and take the actions you know are best and still come out on the short
end. I'd need to see a guy apparently miss the fact that he had been targeted
several times before I'd conclude that he was not considering his emissions
history or acting on it to the best of his ability. Of course, if it came up
in a training exercise, I could ask him about it in the debriefing if it
seemed to impact the outcome.

KE: Suppose you wanted to figure out whether a TAO trainee using a training
sTmulator like NAVTAG had this problem just by looking at his performance.
What type of situations would you set up?

DE: I'd put him on a low-capable ship and give him some INTEL about some high-
capable opponents; that way he wouldn't be quick to go on the offensive
without first hoping ORANGE would give him some good data that could
compensate for the capability imbalance. I'd put no constraints on his
manuevering. Then I'd set him up by having him respond to some communication
and at some later time pick up some ambiguous passive emission that was
ORANGE-originated but insufficient for identification. Then I could look for
a zig-zag with more certainty. I'd give him a few exercises in which those
were the features before any engagement actually commenced.

KE: What about his possible belief that the enemy hadn't been able to target
FiTm, or an attempt at deception?

DE: Well, on the first, those high-capability ships generally have the best
M systems, so if his INTEL says that's what he might expect, he wouldn't
want to ignore them. Also, instead of just a COMM emission I could set the
simulator to give him a real emissions error--tell him his ECM equipment or a
weapons control radar accidently went on for a few seconds. That's real
unlikely, but possible. As to the deception, if I set up the trainer to
ignore his deception and hit him with an SSM if he didn't zig-zag, then after
a few exercises he'd be zig-zagging if he knew he was supposed to do so or if
he wasn't forgetting his emissions history. Only problem with that is
discouraging his use of deception when it might be his best chance. I'd
address that directly if I were an instructor after I was sure a trainee knew
the best non-deception response to the situations.

KE: Let's talk about situations now where BLUE believes he's been targeted
wTth regard to bearing and wants to initiate the engagement. Those are where
he is on a high-capable platform or has an important defensive role for some
other HVUs.

DE: That's right. The biggest problems are not giving ORANGE better targeting
Uaita before you are ready to fire yourself.

KE: Let's talk first about the case where BLUE hasn't seen a surveillance
a-idar emission from ORANGE.

-9I

98 g8 -



NAVTRAEQUIPCEN 82-C-0151-1

DE: Well one problem I've seen there is BLUE's use of his own surveillance
F-adar. First, you don't want to use it if your EW people tell you the track's
source seemed to be at a range outside your destruction zone. If you do, all
you are going to do is confirm your identity and maybe give him track info.
It may allow you to establish a better track on him but you can't do anything
about it.

KE: You told me that in that case you should steam toward the target's
Yearing, so that the error is in not executing that procedure when the
situation warrants it--that is, when you have suggestive evidence that the

* target is out of range.

DE: Right. Except of course in the case where your SSMs are mounted aft and
you might not be able to recover fast enough to shoot if you are in range and
he shoots first. That's the tricky one if you are determined to be offensive.

KE: You said "first" problem before: what other problems are there in using
i-rveillance radar at that point?

DE: It's turning it on continuously right away instead of taking a snapshot.
That gives him better targeting and all you need is a snapshot to determine
how to engage him with the fire control systems. You don't want to monitor
with your surveillance radar unless you've already seen his fire control radar
light off.

I- . . . .
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